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Chapter 1

Introduction

This document, referred to as the “OpenGL Specification” or just “Specification”
hereafter, describes the OpenGL graphics system: what it is, how it acts, and what
is required to implement it. We assume that the reader has at least a rudimentary
understanding of computer graphics. This means familiarity with the essentials
of computer graphics algorithms and terminology as well as with modern GPUs
(Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
Registry, located at URL

http://www.opengl.org/registry/

1.1 Formatting of the OpenGL Specification

This version of the OpenGL Specification has undergone major restructuring to
focus on programmable shading, and to describe important concepts and objects in
the context of the entire API before describing details of their use in the graphics
pipeline.

1.1.1

This subsection is only defined in the compatibility profile.

1.1.2

This subsection is only defined in the compatibility profile.


http://www.opengl.org/registry/
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1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is an API (Application Programming Inter-
face) to graphics hardware. The API consists of a set of several hundred procedures
and functions that allow a programmer to specify the shader programs, objects, and
operations involved in producing high-quality graphical images, specifically color
images of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls control drawing geometric objects such as points, lines, and
polygons, but the way that some of this drawing occurs (such as when antialiasing
or multisampling is in use) relies on the existence of a framebuffer and its proper-
ties. Some commands explicitly manage the framebuffer.

1.2.1 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
shader programs or shaders, data used by shaders, and state controlling aspects of
OpenGL outside the scope of shaders. Typically the data represent geometry in two
or three dimensions and texture images, while the shaders control the geometric
processing, rasterization of geometry and the lighting and shading of fragments
generated by rasterization, resulting in rendering geometry into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
OpenGL commands to define shaders, geometry, and textures are made, followed
by commands which draw geometry by transferring specified portions of the geom-
etry to the shaders. Drawing commands specify simple geometric objects such as
points, line segments, and polygons, which can be further manipulated by shaders.
There are also commands which directly control the framebuffer by reading and
writing pixels.

1.2.2 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU
processors. However, OpenGL may be implemented on less capable GPUs, or even
without a GPU, by moving some or all operations into the host CPU.

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL API, while dividing the work for each OpenGL command
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between the CPU and the graphics hardware as appropriate for the capabilities of
the GPU.

OpenGL contains a considerable amount of information including many types
of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL. Most of these objects and state are available to the programmer, who can
set, manipulate, and query their values through OpenGL commands. Some of it,
however, is derived state visible only by the effect it has on how OpenGL oper-
ates. One of the main goals of this Specification is to describe OpenGL objects
and context state explicitly, to elucidate how they change in response to OpenGL
commands, and to indicate what their effects are.

1.2.3 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven fixed-function stages that are invoked by a set of specific drawing opera-
tions. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.2.4 Fixed-function Hardware and the Compatibility Profile

Older generations of graphics hardware were not programmable using shaders,
although they were configurable by setting state controlling specific details of their
operation. The compatibility profile of OpenGL continues to support the legacy
OpenGL commands developed for such fixed-function hardware, although they
are typically implemented by writing shaders which reproduce the operation of
such hardware. Fixed-function OpenGL commands and operations are described
as alternative interfaces following descriptions of the corresponding shader stages.

1.2.5 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from
use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix D.
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1.3 Related APIs

Other APIs related to OpenGL are described below. Most of the specifications for
these APIs are available on the Khronos Group websites, although some vendor-
specific APIs are documented on that vendor’s developer website.

1.3.1 OpenGL Shading Language

The OpenGL Specification should be read together with a companion document
titled The OpenGL Shading Language. The latter document (referred to as the
OpenGL Shading Language Specification hereafter) defines the syntax and seman-
tics of the programming language used to write shaders (see chapter 7). Descrip-
tions of shaders later in this document may include references to concepts and
terms (such as shading language variable types) defined in the OpenGL Shading
Language Specification .

OpenGL 4.3 implementations are guaranteed to support version 4.30 of the
OpenGL Shading Language. All references to sections of that specification refer to
that version. The latest supported version of the shading language may be queried
as described in section 22.2.

The core profile of OpenGL 4.3 is also guaranteed to support all previous ver-
sions of the OpenGL Shading Language back to version 1.40. In some implemen-
tations the core profile may also support earlier versions of the Shading Language,
and may support compatibility profile versions of the Shading Language for ver-
sions 1.40 and earlier. In this case, errors will be generated when using language
features such as compatibility profile built-ins not supported by the core profile
APIL. The #version strings for all supported versions of the OpenGL Shading
Language may be queried as described in section 22.2.

The OpenGL Shading Language Specification is available in the OpenGL Reg-
istry.

1.3.2 OpenGL ES

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D
graphics on embedded systems such as mobile phones, game consoles, and ve-
hicles. It consists of well-defined subsets of OpenGL. OpenGL ES version 1.1
implements a subset of the OpenGL 1.5 fixed-function API, OpenGL ES 2.0 im-
plements a subset of the OpenGL 2.0 shader-based API, and OpenGL ES 3.0 imple-
ments a subset of OpenGL 3.3. OpenGL ES versions also include some additional
functionality taken from later OpenGL versions or specific to OpenGL ES. It is
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straightforward to port code written for OpenGL ES to corresponding versions of
OpenGL.

OpenGL and OpenGL ES are developed in parallel within the Khronos Group,
which controls both standards.

OpenGL 4.3 includes functionality initially defined in OpenGL ES 3.0, for
increased compatibility between OpenGL and OpenGL ES implementations.

The OpenGL ES Specifications are available in the Khronos API Registry at
URL

http://www.khronos.org/registry/

1.3.3 OpenGL ES Shading Language

The Specification should also be read together with companion documents titled
The OpenGL ES Shading Language. Both versions 1.00 and 3.00 should be read.
These documents define versions of the OpenGL Shading Language designed for
implementations of OpenGL ES 2.0 and 3.0 respectively, but also supported by
OpenGL implementations. References to the OpenGL Shading Language Speci-
fication hereafter include both OpenGL and OpenGL ES versions of the Shading
Language; references to specific sections are to those sections in version 4.30 of
the OpenGL Shading Language Specification .

OpenGL 4.3 implementations are guaranteed to support both versions 1.00 and
3.00 of the OpenGL ES Shading Language.

The #version strings for all supported versions of the OpenGL Shading Lan-
guage may be queried as described in section 22.2.

The OpenGL ES Shading Language Specifications are available in the Khronos
API Registry.

1.3.4 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graph-
ics API based on OpenGL ES 2.0. Developers familiar with OpenGL ES 2.0 will
recognize WebGL as a shader-based API using a form of the OpenGL Shading
Language, with constructs that are semantically similar to those of the underly-
ing OpenGL ES 2.0 APL It stays very close to the OpenGL ES 2.0 specification,
with some concessions made for what developers expect out of memory-managed
languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.
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1.3.5 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

1.3.5.1 GLX - X Window System Bindings

OpenGL Graphics with the X Window System, referred to as the GLX Specification
hereafter, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is available.
The GLX Specification is available in the OpenGL Registry.

1.3.5.2 WGL - Microsoft Windows Bindings

The WGL API supports use of OpenGL with Microsoft Windows. WGL is docu-
mented in Microsoft’s MSDN system, although no full specification exists.

1.3.5.3 MacOS X Window System Bindings

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X window
system, including CGL, AGL, and NSOpenGLView. These APIs are documented
on Apple’s developer website.

1.3.54 EGL - Mobile and Embedded Device Bindings

The Khronos Native Platform Graphics Interface or “EGL Specification” describes
the EGL API for use of OpenGL ES on mobile and embedded devices. EGL im-
plementations supporting OpenGL may be available on some desktop platforms as
well. The EGL Specification is available in the Khronos API Registry.

1.3.6 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL buffer and texture objects, and
to coordinate control of and transfer of data between OpenCL and OpenGL. This
allows applications to split processing of data between OpenCL and OpenGL; for
example, by using OpenCL to implement a physics model and then rendering and
interacting with the resulting dynamic geometry using OpenGL.
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The OpenCL Specification is available in the Khronos API Registry.
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Chapter 2

OpenGL Fundamentals

This chapter introduces fundamental concepts including the OpenGL execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 Execution Model

OpenGL (henceforth, “the GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point,
line segment, patch, or polygon. Context state may be changed independently; the
setting of one piece of state does not affect the settings of others (although state and
shader all interact to determine what eventually ends up in the framebuffer). State
is set, primitives drawn, and other GL operations described by sending commands
in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
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depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL state or the framebuffer must
be complete before any subsequent command can have any such effects.

Data binding occurs on call. This means that data passed to a GL command
are interpreted when that command is received. Even if the command requires a
pointer to data, those data are interpreted when the call is made, and any subsequent
changes to the data have no effect on the GL (unless the same pointer is used in a
subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects, although
shaders can be written to generate such objects. In other words, OpenGL provides
mechanisms to describe how complex geometric objects are to be rendered, rather
than mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is net-
work transparent. A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state and objects. A client may choose to be
made current to any one of these contexts.

Issuing GL commands when a program is not current to a context results in
undefined behavior.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
Jjects, may be created as desired, A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
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trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.3.5.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can be associated with different default framebuffers, and some
context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL is designed to be run on a range of platforms with varying capabilities,
memory, and performance. To accommodate this variety, we specify ideal behavior
instead of actual behavior for certain GL operations. In cases where deviation from
the ideal is allowed, we also specify the rules that an implementation must obey
if it is to approximate the ideal behavior usefully. This allowed variation in GL
behavior implies that two distinct GL implementations may not agree pixel for
pixel when presented with the same input, even when run on identical framebuffer
configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL (by gl, GL_, and GL, respectively), to reduce name clashes with
other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL commands as functions or procedures using
ANSI C syntax. Languages such as C++ and Javascript which allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
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command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformdf( int location, float v0, float vl,
float v2, float v3);

and
void GetFloatv( enum value, float *data);
In general, a command declaration has the form

rtype Name{e1234}{c b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args] ) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments argl through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}( int location, T value);
indicates the eight declarations

void Uniformli( int location, int value);

void Uniformlf( int location, f£loat value);

void Uniform2i( int location, int v0, int vl);

void Uniform2f( int location, float v0, float vl);

void Uniform3i( int location, int v0, int vI, int v2);

void Uniform3f( int location, £loat v0, float vl,
float v3);
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Type Descriptor | Corresponding GL Type

b byte

S short
i int

i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void Uniformdi( int location, int v0, int vI, int v2,
int v3);

void Uniformdf( int location, float v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping'.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using

! These changes are backwards-compatible at the compilation and linking levels, and are being
propagated to man pages and header files as well.
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GL Type Description
Bit Width

boolean 1 or more | Boolean

byte 8 Signed two’s complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed two’s complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed two’s complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed two’s complement 16.16
scaled integer

int64 64 Signed two’s complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 4.1)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be large enough to store any CPU ad-
dress. sync is defined as an anonymous struct pointer in the C language bindings
while intptr and sizeiptr are defined as integer types large enough to hold

a pointer.
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a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer.

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point, with or without normalization as described for spe-
cific commands.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows:

e If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

e If a command returning integer data is called, such as GetIntegerv or Get-
Integer64v, a boolean value of TRUE or FALSE is interpreted as 1 or 0, re-
spectively. A floating-point value is rounded to the nearest integer, unless the
value is an RGBA color component, a DepthRange value, or a depth buffer
clear value. In these cases, the query command converts the floating-point
value to an integer according to the INT entry of table 18.2; a value not in
[—1, 1] converts to an undefined value.
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e If a command returning floating-point data is called, such as GetFloatv or
GetDoublev, a boolean value of TRUE or FALSE is interpreted as 1.0 or
0.0, respectively. An integer value is coerced to floating-point. Single- and
double-precision floating-point values are converted as necessary.

If a value is so large in magnitude that it cannot be represented by the returned
data type, then the nearest value representable using the requested type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-—
WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f.

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. 1t is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL
contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.3.5.

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
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errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects; the command which generates the error is
ignored so that it has no effect on GL state or framebuffer contents. Except as
otherwise noted, if the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the
GL in the presence of errors is subject to change, and extensions to OpenGL may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command.

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, an
INVALID_ENUM error is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value or values pointed to are not
allowable for the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

o If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of OUT_OF_MEMORY) wherever they apply. However, they ap-
ply even if not explicitly described, unless a specific command describes different
behavior. For example, certain commands use a sizei parameter to indicate the
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Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes

INVALID_FRAMEBUFFER_OPERATION | Framebuffer object is not com- | Yes

plete

OUT_OF_MEMORY
cute command

Not enough memory left to exe- | Unknown

Command would cause a stack | Yes
overflow

STACK_OVERFLOW

Command would cause a stack | Yes
underflow

STACK_UNDERFLOW

Table 2.3: Summary of GL errors

length of a string, and also use negative values of the parameter to indicate a null-
terminated string. These commands do not generate an INVALID_VALUE errof,
because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in the Specification.

When a command could potentially generate several different errors (for ex-
ample, when is passed separate enum and numeric parameters which are both out
of range), the GL implementation may choose to generate any of the applicable
erTors.

When an error is generated, the GL may also generate a debug output message
describing its cause (see chapter 20). The message has source DEBUG_SOURCE_—
API, type DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred
processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
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errors generated by a command may be described elsewhere in the specification
than the command itself.

2.3.2 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the
network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

void Flush( void);

which causes all previously issued GL commands to complete in finite time (al-
though such commands may still be executing when Flush returns).
The command

void Finish( void);

forces all previously issued GL commands to complete. Finish does not return
until all effects from such commands on GL client and server state and the frame-
buffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.3 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined under ”’Floating-Point Com-
putation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and
per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL Shading Language Specification .

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

Floating-Point Computation
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We do not specify how floating-point numbers are to be represented, or the
details of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-
point operations are accurate to about 1 part in 10°. The maximum representable
magnitude for all floating-point values must be at least 232, -0 = 0 -z = 0 for
any non-infinite andnon-NaN z. 1 -z =z -1 =2. 2 +0=04+2 = 2. 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 8. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL. command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (.5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x AL E=0,M+#0
V=q(=Dx2F 5 (1+45), 0<E<31
(—1)% x Inf, E=31,M=0
| NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer /V, then

g {N mod 65536J
32768

E_ {N mod 32768J
1024

M = N mod 1024.
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Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaNV) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 6-bit mantissa (M ). The value V' of an unsigned 11-bit floating-point number
is determined by the following:

0.0, E=0,M=0
—14 M —
271 % &, E=0,M+#0
V=928 x (1+4), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer NV, then

N
EF=|—
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Unsigned 10-Bit Floating-Point Numbers
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An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number
is determined by the following:

0.0, E=0,M=0
-4 M —
271 % 22, E=0,M#0
V=92 % (1+4]), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

p=|N
32
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed rep-
resentation with 16 bits to the right of the binary point (fraction bits).

General Requirements

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.
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2.3.4 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point inte-
ger representation. When the integer is one of the types defined in table 2.2, b is
the required bit width of that type. When the integer is a texture or renderbuffer
color or depth component (see section 8.5), b is the number of bits allocated to that
component in the internal format of the texture or renderbuffer. When the integer is
a framebuffer color or depth component (see section 9), b is the number of bits allo-
cated to that component in the framebuffer. For framebuffer and renderbuffer alpha
components, b must be at least 2 if the buffer does not contain an alpha component,
or if there is only 1 bit of alpha in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively.

2.3.4.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

C

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

C

Only the range [—2°~1 4 1,2°~1 — 1] is used to represent signed fixed-point
values in the range [—1, 1]. For example, if b = 8, then the integer value —127 cor-
responds to —1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (—128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
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as vertex attribute values”, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

2.3.4.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

fl=fx(@2b-1). (2.3)

f is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value c is performed by clamping f to the range [—1, 1], then
computing

fr=fx @t -1. (2.4)

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 2.2.2) and returning integers’, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.5. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their

2 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —128 mapped to —1.0, 127 mapped to 1.0, and 0.0 was not
exactly representable.

3 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —1.0 mapped to —128, 1.0 mapped to 127, and 0.0 was not
exactly representable.
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function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL may be hardware dependent, the Specifi-
cation is independent of any specific hardware on which it is implemented. We are
concerned with the state of graphics hardware only when it corresponds precisely
to GL state.

2.4.1 Generic Context State Queries

Context state queries are described in detail in chapter 22.

2.5 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,
texture image, and framebuffer memory that is accessed by shaders and directly
by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types
of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.
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2.5.1 Object Management
2.5.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

A few types of objects are created by commands which return the name of the
new object at the same time they create the object. Examples include CreatePro-
gram for program objects and FenceSync for fence sync objects.

2.5.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names
to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.
However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.
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2.5.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.3.5. These APIs are responsible for creation and manage-
ment of contexts, and not discussed further here. More detailed discussion of the
behavior of shared objects is included in chapter 5. Except as defined below for
specific object types, all state in a context is specific to that context only.

2.5.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory.

Buffer objects may be shared. They are described in detail in chapter 6.

2.5.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

2.5.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.
Program objects may be shared. They are described in detail in chapter 7.

2.5.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
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combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.5.6 Texture Objects

Texture objects or textures include a collection of fexture images built from arrays
of image elements referred to as fexels. There are many types of texture objects
varying by dimensionality and structure; the different texture types are described
in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

2.5.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture
image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.
Sampler objects may be shared. They are described in detail in chapter 8.

2.5.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered
to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.

Renderbuffer objects may be shared. They are described in detail in chapter 9.
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2.5.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer
and/or texture objects, and are not shared. They are described in detail in chapter 9.

2.5.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

2.5.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback
mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 13.2.1.

2.5.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the
number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.5.13 Sync Objects

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occuring in the GL state machine or in the graphics
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pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.
Sync objects may be shared. They are described in detail in section 4.1.

2.5.14

This subsection is only defined in the compatibility profile.
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Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Commands are effectively sent through a processing pipeline. Different stages of
the pipeline use data contained in different types of buffer objects.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed, fol-
lowed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from single input primitives. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for the
next stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or poly-
gon. Each fragment so produced is fed to the next stage that performs operations
on individual fragments before they finally alter the framebuffer. These operations
include conditional updates into the framebuffer based on incoming and previously
stored depth values (to effect depth buffering), blending of incoming fragment col-
ors with stored colors, as well as masking, stenciling, and other logical operations
on fragment values.

Pixels may also be read back from the framebuffer or copied from one portion
of the framebuffer to another. These transfers may include some type of decoding
or encoding.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule
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of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.
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Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occuring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync( enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.
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Property Name Property Value
OBJECT_TYPE SYNC_FENCE
SYNC_CONDITION | condition
SYNC_STATUS UNSIGNALED
SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_ COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.

Each sync object contains a number of properties which determine the state of
the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The SYNC_STATUS property will be changed to SIGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command
void DeleteSync( sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
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object is deleted immediately. Otherwise, sync is flagged for deletion and will be
deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync( sync sync, bitfield flags,
uint 64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WATIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.
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Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSynce( sync sync, bitfield flags,
uint 64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block' until sync is signaled”.

sync has the same meaning as for ClientWaitSync.

timeout must currently be the special value TIMEOUT_IGNORED, and is not
used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with the symbolic constant MAX_SERVER_WAIT_-
TIMEOUT. There is currently no way to determine whether WaitSync unblocked
because the timeout expired or because the sync object being waited on was sig-
naled.

flags must be zero.

If an error occurs, WaitSync generates a GL error as specified below, and does
not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT_ -
IGNORED or flags is not zero®.

“ flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

! The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.
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4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior?, if the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, and sync is
unsignaled when ClientWaitSync is called, then the equivalent of Flush will be
performed before blocking on sync.

Additional constraints on the use of sync objects are discussed in chapter 5.

State must be maintained to indicate which sync object names are currently
in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled
or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv( sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.
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On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_—
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if bufSize is negative.

The command
boolean IsSyne( sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

4.2 Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. Query types supported by the GL include

e Primitive queries with a target of PRIMITIVES_GENERATED (see sec-
tion 13.3) return information on the number of primitives processed by
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the GL. There may be at most the value of MAX_VERTEX_STREAMS active
queries of this type.

e Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 13.3) return information on the number of primitives
written to one or more buffer objects. There may be at most the value of
MAX_VERTEX_STREAMS active queries of this type.

e Occlusion queries (see section 17.3.7) count the number of fragments or
samples that pass the depth test, or set a boolean to true when any fragments
or samples pass the depth test. There may be at most one active query of this

type.

e Time elapsed queries (see section 4.3) record the amount of time needed to
fully process a sequence of commands. There may be at most one active
query of this type.

e Timer queries (see section 4.3) record the current time of the GL. There may
be at most one active query of this type.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 4.2.1 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

The command

void GenQueries( sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, for the purposes of GenQueries only, but no object is associated with
them until the first time they are used by BeginQuery, BeginQueryIndexed, or
QueryCounter (see section 4.3).

Errors
An INVALID_VALUE error is generated if n is negative.
Query objects are deleted by calling

void DeleteQueries( sizein, const uint *ids);
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ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

Each type of query, other than timer queries of type TIMESTAMP, supported by
the GL has an active query object name for each of the possible active queries. If
an active query object name is non-zero, the GL is currently tracking the corre-
sponding information, and the query results will be written into that query object.
If an active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

void BeginQueryIndexed( enum target, uint index,
uint id);

target indicates the type of query to be performed. The valid values of rarget are
discussed in more detail in subsequent sections.

index is the index of the query and must be between zero and a farget-specific
maximum.

BeginQuerylIndexed sets the active query object name for target and index to
id.

If id is an unused query object name, the name is marked as used and associated
with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type.

Errors

An INVALID_ENUM error is generated if target is not SAMPLES_PASSED,
ANY_SAMPLES_PASSED, or ANY_SAMPLES_PASSED_CONSERVATIVE for
an occlusion query; TIME_ELAPSED for a timer query; PRIMITIVES_ -
GENERATED for a primitives generated query; or TRANSFORM_FEEDBACK_ -
PRIMITIVES_WRITTEN for a primitives written query.

An INVALID_ VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE, Or
TIME_ELAPSED, and index is not zero.
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An INVALID_VALUE error is generated if farget is PRIMITIVES_ -
GENERATED Or TRANSFORM_FEEDBACK_PRIMITIVES WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries, or if such a name has since been deleted
with DeleteQueries.

An INVALID_OPERATION error is generated if id is any of:

® Zero

e the name of an existing query object whose type does not match farget
e an active query object name for any target and index

e the active query object for conditional rendering (see section 10.10).
An INVALID_OPERATION error is generated if the active query object
name for farget and index is non-zero.

The command
void BeginQuery( enum target, uint id);
is equivalent to
BeginQuerylIndexed (target, 0, id);
The command
void EndQueryIndexed( enum target, uint index);

marks the end of the sequence of commands to be tracked for the active query
specified by target and index. The corresponding active query object is updated to
indicate that query results are not available, and the active query object name for
target and index is reset to zero. When the commands issued prior to EndQueryIn-
dexed have completed and a final query result is available, the query object active
when EndQuery was called is updated to contain the query result and to indicate
that the query result is available.
target and index have the same meaning as for BeginQueryIndexed.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_ -
PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE
TIME_ELAPSED, PRIMITIVES_GENERATED, or TRANSFORM_FEEDBACK_—
PRIMITIVES_WRITTEN.
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An INVALID_ VALUE error is generated if target is SAMPLES_PASSED,
ANY SAMPLES_PASSED, ANY_ SAMPLES_ PASSED_CONSERVATIVE, Or
TIME_ELAPSED, and index is not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES -
GENERATED or TRANSFORM_FEEDBACK_PRIMITIVES WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_OPERATION error is generated if the active query object
name for farget and index is zero.

The command
void EndQuery( enum target);
is equivalent to
EndQueryIndexed (target, 0);

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may be determined as described in section 4.2.1. In the initial state of a query
object, the result is not available (the flag is FALSE), and the result value is zero.

If the query result overflows (exceeds the value 2™ — 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2’ — 1 and incrementing no further.

The necessary state for each possible active query farget and index is an un-
signed integer holding the active query object name (zero if no query object is ac-
tive), and any state necessary to keep the current results of an asynchronous query
in progress. Only a single type of occlusion query can be active at one time, so the
required state for occlusion queries is shared.

4.2.1 Query Object Queries
The command
boolean IsQuery(uint id);
returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero

value that is not the name of a query object, IsQuery returns FALSE.
Information about an active query object can be queried with the command
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void GetQueryIndexediv( enum farget, uint index,
enum pname, int *params);

target and index specify the active query, and have the same meaning as for Begin-
QueryIndexed.

If pname is CURRENT_QUERY, the name of the currently active query object for
target and index, or zero if no query is active, will be placed in params. If target is
TIMESTAMP, zero is always returned.

If pname is QUERY_COUNTER_BITS, index is ignored and the implementation-
dependent number of bits used to hold the query result for farget will be placed in
params. The number of query counter bits may be zero, in which case the counter
contains no useful information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For occlusion queries with target ANY_SAMPLES_PASSED oOr ANY_ -
SAMPLES_PASSED_CONSERVATIVE, if the number of bits is non-zero, the min-
imum number of bits is 1. For occlusion queries with target SAMPLES_PASSED, if
the number of bits is non-zero, the minimum number of bits allowed is 32.

For timer queries (target TIME_ELAPSED and TIMESTAMP), if the number of
bits is non-zero, the minimum number of bits allowed is 30. This will allow at least
1 second of timing.

Errors

An INVALID_ENUM error is generated if farget is not SAMPLES_ -
PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE
TIMESTAMP, TIME_ELAPSED, PRIMITIVES_GENERATED, Or TRANSFORM_ —
FEEDBACK_PRIMITIVES_WRITTEN.

An INVALID_VALUE error is generated if target is SAMPLES_PASSED,
ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE,
TIMESTAMP, or TIME_ELAPSED, and index is not zero.

An INVALID_VALUE error is generated if farget is PRIMITIVES_-
GENERATED Or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, and index
is not in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_ENUM error is generated if pname is not CURRENT_QUERY
or QUERY_COUNTER_BITS.

The command

void GetQueryiv( enum target, enum pname, int *params);
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is equivalent to
GetQuerylIndexediv (target, 0, pname, params);
The state of a query object can be queried with the commands

void GetQueryObjectiv( uint id, enum pname,
int *params);

void GetQueryObjectuiv( uint id, enum pname,
uint *params);

void GetQueryObjecti6dv( uint id, enum pname,
int 64 *params);

void GetQueryObjectui6dv( uint id, enum pname,
uint 64 *params);

id is the name of a query object.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE.

If pname is QUERY_RESULT, then the query object’s result value is returned
as a single integer in params. If the value is so large in magnitude that it cannot
be represented with the requested type, then the nearest value representable using
the requested type is returned. If the number of query counter bits for rarget is
zero, then the result is returned as a single integer with the value zero. Querying
QUERY_RESULT for any given query object forces that query to complete within a
finite amount of time.

If multiple queries are issued using the same object name prior to calling Get-
QueryObject*, the result and availability information returned will always be from
the last query issued. The results from any queries before the last one will be lost
if they are not retrieved before starting a new query on the same target and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID_ENUM error is generated if pname is not QUERY_RESULT or
QUERY_RESULT_AVAILABLE.
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4.3 Time Queries

Query objects may also be used to track the amount of time needed to fully com-
plete a set of GL commands (a time elapsed query), or to determine the current
time of the GL (a timer query).

When BeginQuery and EndQuery are called with a target of TIME_ELAPSED,
the GL prepares to start and stop the timer used for time elapsed queries. The timer
is started or stopped when the effects from all previous commands on the GL client
and server state and the framebuffer have been fully realized. The BeginQuery and
EndQuery commands may return before the timer is actually started or stopped.
When the time elapsed query timer is finally stopped, the elapsed time (in nanosec-
onds) is written to the corresponding query object as the query result value, and the
query result for that object is marked as available.

A timer query object is created with the command

void QueryCounter( uint id, enum target);

target must be TIMESTAMP. If id is an unused query object name, the name is
marked as used and associated with a new query object of type TIMESTAMP. Oth-
erwise id must be the name of an existing query object of that type.

When QueryCounter is called, the GL records the current time into the corre-
sponding query object. The time is recorded after all previous commands on the GL
client and server state and the framebuffer have been fully realized. When the time
is recorded, the query result for that object is marked available. QueryCounter
timer queries can be used within a BeginQuery / EndQuery block where the far-
get is TIME_ELAPSED and it does not affect the result of that query object.

The current time of the GL may be queried by calling GetIntegerv or Get-
Integer64v with the symbolic constant TIMESTAMP. This will return the GL time
after all previous commands have reached the GL server but have not yet neces-
sarily executed. By using a combination of this synchronous get command and the
asynchronous timestamp query object target, applications can measure the latency
between when commands reach the GL server and when they are realized in the
framebuffer.

Errors

An INVALID_ENUM error is generated if target is not TIMESTAMP.

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries, or if such a name has since been deleted
with DeleteQueries.

An INVALID_OPERATION error is generated if id is the name of an exist-
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ing query object whose type is not TIMESTAMP.
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Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL contexts, including deletion behavior and how changes to shared objects
are propagated between contexts.

Objects that may be shared between contexts include buffer objects, program
and shader objects, renderbuffer objects, sampler objects, sync objects, and texture
objects (except for the texture objects named zero).

Objects which contain references to other objects include framebuffer, program
pipeline, query, transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing differ-
ent OpenGL versions or different profiles of the same OpenGL version (see ap-
pendix D). However, implementation-dependent behavior may result when aspects
and/or behaviors of such shared objects do not apply to, and/or are not described
by more than one version or profile.

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
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mentation as soon as possible.

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, and detached from any attachments
of container objects that are bound to the current context, as described for Delete-
Buffers, DeleteTextures, and DeleteRenderbuffers. If the object binding was
established with other related state (such as a buffer range in BindBufferRange
or selected level and layer information in FramebufferTexture or BindImage-
Texture), that state is not affected by the automatic unbind. Bind points in other
contexts are not affected. Attachments to unbound container objects, such as dele-
tion of a buffer attached to a vertex array object which is not bound to the context,
are not affected and continue to act as references on the deleted object, as described
in the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, texture, renderbuffer, query, transform feedback, or sync object
is deleted, its name immediately becomes invalid (e.g. is marked unused), but
the underlying object will not be deleted until it is no longer in use. A buffer,
texture, or renderbuffer object is in use while it is attached to any container object
or bound to a context bind point in any context. A sync object is in use while
there is a corresponding fence command which has not yet completed and signaled
the sync object, or while there are any GL clients and/or servers blocked on the
sync object as a result of ClientWaitSync or WaitSync commands. Query and
transform feedback objects are in use so long as they are active, as described in
sections 4.2 and 13.2.1, respectively.

When a shader object or program object is deleted, it is flagged for deletion, but
its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object attached to a container ob-
ject (such as a buffer object attached to a vertex array object, or a renderbuffer
or texture attached to a framebuffer object), or a shared object bound in multiple
contexts. Following its deletion, the object’s name may be returned by Gen* com-
mands, even though the underlying object state and data may still be referred to by
container objects, or in use by contexts other than the one in which the object was
deleted. Such a container or other context may continue using the object, and may
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still contain state identifying its name as being currently bound, until such time
as the container object is deleted, the attachment point of the container object is
changed to refer to another object, or another attempt to bind or attach the name
is made in that context. Since the name is marked unused, binding the name will
create a new object with the same name, and attaching the name will generate an
error. The underlying storage backing a deleted object will not be reclaimed by
the GL until all references to the object from container object attachment points or
context binding points are removed.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signaled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.

e The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

e State-setting commands, such as TexParameter.

e Data-setting commands, such as TexSubImage* or BufferSubData.
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e Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

e Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

o Commands that affect both state and data, such as TexImage* and Buffer-
Data.

e Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

e Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of 7 are construed to include the contents of
the data store of 7, even if T”s data store was modified via a different view of the
data store.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command ' may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:

e An object T is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

!The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time # must be completed by the time a command
issued in the same context at time ¢ + 1 uses the result of that change.
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e Tis indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 [f the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with update via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 13.2.3), results will be undefined.

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.
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Rule 4 If the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn'’t already attached to, or attaching an object again to a binding point
it was already attached.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.
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Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The command

void GenBuffers( sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors

An INVALID_VALUE error is generated if 7 is negative.

Buffer objects are deleted by calling
void DeleteBuffers( sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.
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Errors

An INVALID_VALUE error is generated if # is negative.
The command
boolean IsBuffer( uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding a name returned by GenBuffers to a buffer
target. The binding is effected by calling

void BindBuffer( enum target, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named buffer
has not been previously bound, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

Buffer objects created by binding a name returned by GenBuffers to any of the
valid targets are formally equivalent, but the GL may make different choices about
storage location and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to farget is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in section 5.1.

Initially, each buffer object target is bound to zero.
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Target name Purpose Described in section(s) ‘
ARRAY_BUFFER Vertex attributes 10.3.8
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.6
COPY_WRITE_BUFFER Buffer copy destination 6.6
DISPATCH_INDIRECT_BUFFER | Indirect compute dispatch commands | 19
DRAW_INDIRECT_BUFFER Indirect command arguments 10.3.10
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.9
PIXEL_PACK_BUFFER Pixel read target 18.2,22
PIXEL_UNPACK_BUFFER Texture data source 8.4
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 13.2
UNIFORM_BUFFER Uniform block storage 7.6.2

Table 6.1: Buffer object binding targets.

Name Type Initial Value | Legal Values

BUFFER_SIZE int64 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS | int 0 See section 6.3

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET int64 0 any non-negative integer

BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 6.2: Buffer object parameters and their values.
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Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers, or if such a name has since been
deleted with DeleteBuffers.

There is no buffer object corresponding to the name zero, so client attempts
to modify or query buffer object state for a target bound to zero generate an
INVALID_OPERATION error.

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange( enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase( enum farget, uint index, uint buffer);

target must be one of ATOMIC_COUNTER_BUFFER, SHADER_STORAGE_BUFFER,
TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Additional language
specific to each target is included in sections referred to for each target in table 6.1.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manip-
ulation functions, such as BindBuffer or MapBuffer. Both commands bind the
buffer object named by buffer to both the general binding point, and to the binding
point in the array given by index. If the binds are successful no change is made
to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound, the GL creates
a new state vector, initialized with a zero-sized memory buffer and comprising all
the state and with the same initial values listed in table 6.2.

For BindBufferRange, offser specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offsetr and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. = The starting offset is zero, and the
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amount of data that can be read from or written to the buffer is determined by
the size of the bound buffer at the time the binding is used.

Regardless of the size specified with BindBufferRange, the GL will never
read or write beyond the end of a bound buffer. In some cases this constraint may
result in visibly different behavior when a buffer overflow would otherwise result,
such as described for transform feedback operations in section 13.2.2.

Errors

An INVALID_ENUM error is generated if farget is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of farget-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if buffer is not zero or a name
returned from a previous call to GenBuffers, or if such a name has since been
deleted with DeleteBuffers.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID_ VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified target, as described in section 6.7.1.

6.2 Creating and Modifying Buffer Object Data Stores
The data store of a buffer object is created and optionally initialized by calling

void BufferData( enum target, sizeiptr size, const
void *data, enum usage );

with target set to one of the targets listed in table 6.1, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-NULL, then the source data is copied to the buffer object’s data store.
If data is NULL, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. In the following descriptions, a buffer’s
data store is sourced when if is read from as a result of GL commands which
specify images, or invoke shaders accessing buffer data as a result of drawing com-
mands or compute shader dispatch.

The values are:
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STREAM_DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

STATIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_CcoOpPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_corY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /N basic machine units be a multiple of N.

Errors

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_VALUE error is generated if size is negative.

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.
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Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_ACCESS_FLAGS | 0
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 6.3: Buffer object initial state.

An INVALID_ENUM error is generated if usage is not one of the nine us-
ages described above.

An OUT_OF_MEMORY error is generated if the GL is unable to create a data
store of the requested size.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData( enum rarget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 6.1. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range.

Errors

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_STZE for the buffer bound
to rarget.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
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tion 6.3).

6.2.1 Clearing Buffer Object Data Stores

To fill all or part of an existing buffer object’s data store with constant values, call

void ClearBufferSubData( enum farget, enum internalformat,
intptr offset, sizeiptr size, enum format, enum type,
const void *data);

with target set to the target to which the destination buffer is bound. rarget must
be one of the targets listed in table 6.1. internalformat must be set to one of the
format tokens listed in table 8.15. format and type specify the format and type of
the source data and are interpreted as described in section 8.4.4.

offset is the offset, measured in basic machine units, into the buffer object’s
data store from which to begin filling, and size is the size, also in basic machine
units, of the range to fill.

data is a pointer to an array of between one and four components containing
the data to be used as the source of the constant fill value. The elements of data
are converted by the GL into the format specified by internalformat in the manner
described in section 2.2.1, and then used to fill the specified range of the destination
buffer. If data is NULL, then the pointer is ignored and the sub-range of the buffer
is filled with zeros.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_VALUE error is generated if zero is bound to target.

An INVALID_ENUM error is generated if internalformat is not one of the
format tokens listed in table 8.15.

An INVALID_VALUE error is generated if offset or size are not multiples
of the number of basic machine units for the internal format specified by inter-
nalformat. This value may be computed by multiplying the number of compo-
nents for internalformat from table 8.15 by the size if the base type from that
table.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer bound
to target.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
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tion 6.3).

An INVALID_VALUE error is generated if fype is not one of the types in
table 8.2.

An INVALID_VALUE error is generated if format is not one of the formats
in table 8.3.

The command

void ClearBufferData( enum farget, enum internalformat,
enum format, enum type, const void *data);

is equivalent to calling ClearBufferSubData with target, internalformat and data
as specified, offset zero, and size set to the value of BUFFER_SIZE for the buffer
bound to target.

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

void *MapBufferRange( enum target, intptr offset,
sizeiptr length, bitfield access);

with rarget set to one of the targets listed in table 6.1. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.
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If no error occurs, the pointer value returned by Ma