THE OPENGL® SHADING LANGUAGE

John Kessenich
Dave Baldwin
Randi Rost

Language Version 1.10
Document Revision 59
30-April-2004

i The OpenGL Shading Language

Copyright © 2002-2004 3Dlabs, Inc. Ltd.

This document contains unpublished information of 3Dlabs, Inc. Ltd.

This document is protected by copyright, and contains information proprietary to 3Dlabs, Inc. Ltd. Any
copying, adaptation, distribution, public performance, or public display of this document without the
express written consent of 3Dlabs, Inc. Ltd. is strictly prohibited. The receipt or possession of this
document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture,
use, or sell anything that it may describe, in whole or in part.

This document contains intellectual property of 3Dlabs Inc. Ltd., but does not grant any license to any
intellectual property from 3Dlabs or any third party. It is 3Dlabs' intent that should an OpenGL 2.0 API
specification be ratified by the ARB incorporating all or part of the contents of this document, then
3Dlabswould grant aroyalty freelicense to Silicon Graphics, Inc., according to the ARB bylaws, for only
that 3Dlabs intellectua property asis required to produce a conformant implementation.

This specification isprovided "AS1S" WITH NO WARRANTIES WHATSOEVER, WHETHER
EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, 3DLABS EXPRESSLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth in FAR
52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause
at DFARS 252.227-7013 and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the United States.
Contractor/manufacturer is 3Dlabs, Inc. Ltd., 9668 Madison Blvd., Madison, Alabama 35758.

OpenGL isaregistered trademark of Silicon GraphicsInc.

The OpenGL Shading Language ii

CONTENTS

1 INTRODUCTION. . . it et e e e e e ettt e e e 1
1.1 Changessinceverson1.051....................... 1
12 OVEIVIEW .ottt e e 2
1.3 Motivationt 2
1.4 DesignConsiderationsc.couuiinennenn.n. 3
15 ErrorHandlingco i 3
1.6 Typographical Conventions. 4
2 OVERVIEW OF OPENGL SHADING.o ii i 5
21 VeteX ProCessor. e 5
2.2 Fragment ProCcessoruiuinieniiann. 6
3 BASICS .. 8
31 Character Set 8
3.2 SOUMCESIINGS. . v e et 8
3.3 PreproCessort 9
34 CommMENtS.o e 13
35 ToKeNns ... 13
36 Keywords.o 14
37 ldentifiers. ... 14
4 VARIABLES AND TYPES . . it it ittt et i e 16
41 BaSICTYPES ..ottt 16
411 VoI .o 17
412 BOOIEANS . ..ot e 17
413 INEOEIS . ot 17
414 HoOas ...t 18
415 VeCtOrs e 19
416 MaliCES ..ttt it 19
407 Samplers ... 19
418 SHUCIUIES ... e e 20
A1 AITAYS . oottt 21
A2 SCOPING. .« ettt e et et e e 21
4.3 TypeQuaifiers. 22

iii TheOpenGLShadingLanguage

431 DefaultQualifiers 22

432 CONSt ... e 23

4.3.3 Integra Constant EXpressionsc.oounn... 23

434 Attribute ... 23

435 Uniform ... 24

436 Varying ..o 24

5 OPERATORS AND EXPRESSIONS. . .. vt i i e e e e e e e e 26
5.1 OPEEOrS . .. ovo e 26

52 Array Subscripting 27

53 FunctionCalls. 27

54 CONnStrUCIOrS . ..o oot 27

5.4.1 Conversionand Scalar Constructors. 27

5.4.2 Vector and Matrix Constructorscovivn.... 28

543 StructureConstructors i 29

5.5 VectorComponents, 29

56 Matrix Components, 31

5.7 StructuresandFelds 31

58 ASSIgNMENtS.o 31

5.9 EXPreSSIONS. . ..ottt 32

5.10 Vector and Matrix Operations 34

6 STATEMENTS AND STRUCTURE. . . .t vttt it i e e e e e 36
6.1 FunctionDefinitions. i 37

6.1.1 FunctionCaling Conventions 38

6.2 SEECHON. 39

6.3 Heration.o 40

B.4 JUMPS 41

7 BUILT-INVARIABLES . .o ottt e e e e e e e e e 42
7.1 Vertex Shader Specia Variables 42

7.2 Fragment Shader Specia Variables.................. 43

7.3 Vertex Shader Built-In Attributes 44

74 Bult-InConstants.t 44

7.5 Built-InUniformState. 45

7.6 VayingVariables.............. 438

8 BUILT-IINFUNCTIONS e e e 50
8.1 Angleand Trigonometry Functions. 51

8.2 Exponential Functions 52

83 CommonFunctionsc..oiiiiiean.. 52

8.4 GeometricFunctions 54

85 MatriXx Functions ...t 55

The OpenGL Shading Language iv

8.6 Vector Relational Functions. 55

8.7 TextureLookup Functions. 56
8.8 Fragment Processing Functions. 58
8.9 NOISEFUNCLIONS 60
9 SHADING LANGUAGE GRAMMAR. . . .ttt 62
10 ISSUES . ..ot 73

11 ACKNOWLEDGEMENTS

\Y TheOpenGLShadingLanguage

The OpenGL Shading Language

Vi

1

INTRODUCTION

1.1

Note: Document revisions for the language specified by this document are being tracked separately from
thelanguage version. Changing the revision of the document does not changethe version of the language.
This document specifies version 1.10 of the OpenGL Shading Language, document revision number 59.

It requires_ VERSION__to be 110, and #version to accept 110.

Changes since version 1.051

» Added issues 101 through 105. Specification changes made from these issues are to make
array parameters sized, and add some limitationsin constructors. See sections 4.2, 5.4.2,
6.1,6.1.1.

» Added interactionswith ATI_draw_buffersand ARB_color_clamp_control, particularly,
the output variable gl_FragData[n].

» 3.3 Added #version and #extension to declare version and extensions.

» 7.5 Added built-in state for the inverses and transposes of matrices.

* 8 Added built-in functions refract, exp, and log.

» Added the following clarifications and corrections:

» 2.1 Remove "Clamping of colors' from the list of what the vertex processor does.
Thiswas just out of date.

* 2.1 Change "Perspective projection” to more clearly call out projective transform and
perspective division, which belong in different lists.

* 3.3 Reserved pre-processor macrosthat start “GL_".

* 3.6 Added reserved words packed, this, interface, sampler2DRectShadow. Also
clarified that the listed keywords and reserved words are the only ones.

* 4.1.5 Remove "Integer vectors can be used to get multiple integers back from a
textureread." Thiswasjust out of date.

* 4.3.5 Clarified that structs can be constants, and what const must be initialized with.

* 5.8 Clarify what *=, +=, etc. really mean. and that ?: isnot an I-value.

* 5.9 Clarify that operating between a scaar and a vector is alowed for integers as for
floats, and that the list isto list @l operators and expressions.

* 6.1 Correct the examples of dot product prototypes. They were not correct WRT to
the list of prototypes, which themselves have been correct for some time.

* 6.1 Add the clarification "If abuilt-in function is redeclared in a shader (i.e. a
prototype isvisible) before acall toit, then the linker will only attempt to resolve that
call within the set shaders that are linked with it."

* 7.2 Remove the out of date text "an implementation will provide invariant results
within shaders computing depth with the same source-level expression, but invariance
isnot provided between shaders and fixed functionality."

1 The OpenGL Shading Language

INTRODUCTION

1.2

1.3

* 7.4 Correct thelist of built-in constant names: removed suffixes and brought values
up to date.
* 8.2 State the domains for the exponential functions.
» 8.3 Change step() to compare x < edge instead of x <= edge.
» 8.7 Clarify the discussion about when shadowing lookups are undefined.
* 8.9 Further specify the range and frequency constraints of noise.
» Grammar: MOD_ASSIGN change to reserved (to match the specification text).
» Grammar: Change to require array sizes in function parameters.
* Severa typosfixed.

Overview

This document describes a programming language called The OpenGL Shading Language, or glslang.
The recent trend in graphics hardware has been to replace fixed functionality with programmability in
areas that have grown exceedingly complex (e.g., vertex processing and fragment processing). The
OpenGL Shading L anguage has been designed to allow application programmers to express the
processing that occurs at those programmable points of the OpenGL pipeline.

Independently compilable units that are written in this language are called shaders. A programisaset of
shaders that are compiled and linked together. The aim of this document isto thoroughly specify the
programming language. The OpenGL entry points that are used to manipulate and communicate with
programs and shaders are defined separately from this language specification.

The OpenGL Shading Language is based on ANSI C and many of the features have been retained except
when they conflict with performance or ease of implementation. C has been extended with vector and
matrix types (with hardware based qualifiers) to make it more concise for the typical operations carried
out in 3D graphics. Some mechanisms from C++ have also been borrowed, such as overloading functions
based on argument types, and ability to declare variables where they are first needed instead of at the
beginning of blocks.

Motivation

Semiconductor technology has progressed to the point where the levels of computation that can be done
per vertex or per fragment have gone beyond what is feasible to describe by the traditional OpenGL
mechanisms of setting state to influence the action of fixed pipeline stages.

A desire to expose the extended capability of the hardware has resulted in a vast number of extensions
being written and an unfortunate consequence of thisis to reduce, or even eliminate, the portability of
applications, thereby undermining one of the key motivating factors for OpenGL.

A natural way of taming this complexity and the proliferation of extensionsisto allow parts of the
pipeline to be replaced by user programmable stages. This has been done in some recent extensions but
the programming is donein assembler, which is a direct expression of today's hardware and not forward
looking. Mainstream programmers have progressed from assembler to high-level languages to gain
productivity, portability and ease of use. These goals are equally applicable to programming shaders.

The OpenGL Shading Language 2

1.4

1.5

INTRODUCTION

The goal of thiswork is aforward looking hardware independent high-level language that is easy to use
and powerful enough to stand the test of time and drastically reduce the need for extensions. These
desires must be tempered by the need for fast implementations within a generation or two of hardware.

Design Considerations

The various programmabl e processors we are going to introduce repl ace parts of the OpenGL pipelineand
as a starting point they need to be able to do everything they are replacing. Thisisjust the beginning and
the examples from the RenderM an community and newer games provide some hints at the exciting
possibilities ahead.

To facilitate this, the shading language should be at a high enough level and with the abstractions for the
problem domain we are addressing. For graphics this means vector and matrix operations form a
fundamental part of thelanguage. Thisextendsfrom being ableto specify scalar/vector/matrix operations
directly in expressions to efficient ways to manipulate and group the components of vectors and matrices.
The language includes arich set of built-in functions that operate just as easily on vectors as on sca ars.

We are fortunate in having the C language as a base to build on and RenderMan as an existing shading
language to learn from. OpenGL isassociated with “real-time” graphics (as opposed to off-line graphics)
so any aspects of C and RenderMan that hinder efficient compilation or hardware implementation have
been dropped, but, for the most part, these are not expected to be noticeable.

The OpenGL Shading Language is designed specifically for use within the OpenGL environment. It is
intended to provide programmable alternatives to certain parts of the fixed functionality of OpenGL. By
design, itispossible, and quite easy to refer to existing OpenGL state for these partsfrom within a shader.
By design, it is aso possible, and quite easy to use fixed functionality in one part of the OpenGL
processing pipeline and programmable processing in another. It isthe intent that the object code
generated for a shader be independent of other OpenGL state, so that recompiles or managing multiple
copies of object code are not necessary.

Graphics hardware is devel oping more and more parallelism at both the vertex and the fragment
processing levels. Great care has been taken in the definition of the OpenGL Shading Language to allow
for even higher levels of parallel processing.

Finally, it isagoal to use the same high-level programming language for all of the programmable portions
of the OpenGL pipeline. Certain types and built-in functions are not permitted on certain programmable
processors, but the majority of the language is the same across all programmable processors. This makes
it much easier for application developers to embrace the shading language and use it to solve their
OpenGL rendering problems.

Error Handling

Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. For example, completely accurate detection of use of an uninitialized variable is not
possible. Portability is only ensured for well-formed programs, which this specification describes.
Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are not

3 TheOpenGLShadingLanguage

INTRODUCTION

required to do so for al cases. Compilers are required to return messages regarding lexicaly,
grammatically, or semantically incorrect shaders.

1.6 Typographical Conventions

[talic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use afixed width font. Identifiersembedded in text areitdicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragmentsin the text use bold for literals and italics for non-terminals. The officia
grammar in Section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

The OpenGL Shading Language 4

OVERVIEW OF OPENGL SHADING

2 OVERVIEW OF OPENGL SHADING

2.1

The OpenGL Shading Language is actually two closely related languages. These languages are used to
create shaders for the programmable processors contained in the OpenGL processing pipeline. The
precise definition of these programmable unitsis|eft to separate specifications. In this document, we
define them only well enough to provide a context for defining these languages.

Unless otherwise noted in this paper, alanguage feature applies to all languages, and common usage wil
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex or fragment.

Vertex Processor

The vertex processor is aprogrammable unit that operates on incoming vertex values and their associated
data. The vertex processor isintended to perform traditional graphics operations such as:

» Vertex transformation (modelview and projection matrices)

» Normal transformation and normalization

» Texture coordinate generation

» Texture coordinate transformation

e Lighting

» Color material application
Programs written in the OpenGL Shading Language that are intended to run on this processor are called
vertex shaders. Vertex shaders can be used to specify acompletely general sequence of operations to be
applied to each vertex and its associated data. Vertex shadersthat perform some of the computationsin the
list above are responsible for writing the code for all desired functionality from the list above. For
instance, it is not possible to use the existing fixed functionality to perform the vertex and normal
transformation but have a vertex shader perform a specialized lighting function. The vertex shader must
be written to perform all three functions.

The vertex processor does not replace graphics operations that require knowledge of several verticesat a
time or that require topological knowledge, such as:

» Perspective division

* viewport mapping

* Primitive assembly

* Frustum and user clipping

» Backface culling

» Two-sided lighting selection
» Polymode processing

» Polygon offset

5 TheOpenGLShadingLanguage

OVERVIEW OF OPENGL SHADING

2.2

» Depth Range

Any OpenGL state used by the shader is automatically tracked and made available to the shader. This
automatic state tracking mechanism allows the application to use existing OpenGL state commands for
state management and have the current values of such state automatically available for use in the vertex
shader.

The vertex processor operates on one vertex at atime. The design of the vertex processor isfocused on
the functionality needed to transform and light a single vertex. Vertex shaders must compute the
homogeneous position of the coordinate, and they may also compute color, texture coordinates, and other
arbitrary values to be passed to the fragment processor. The output of the vertex processor is sent through
subsequent stages of processing that are defined exactly the same asthey are for OpenGL 1.4: primitive
assembly, user clipping, frustum clipping, perspective projection, viewport mapping, polygon offset,
polygon mode, shade mode, and culling. This programmable unit does not have the capability of reading
from the frame buffer. However, it does have texture lookup capability. Level of detail isnot computed
by theimplementation for avertex shader, but can be specified in the shader. The OpenGL parametersfor
texture maps define the behavior of the filtering operation, borders, and wrapping.

Fragment Processor

The fragment processor is a programmable unit that operates on fragment values and their associated
data. The fragment processor is intended to perform traditional graphics operations such as:

» Operations on interpolated values

» Texture access

» Texture application

* Fog

* Color sum
Programs written in the OpenGL Shading Language that are intended to run on this processor are called
fragment shaders. Fragment shaders can be used to specify a completely general sequence of operations
to be applied to each fragment. Fragment shaders that perform some of the computations from the list
above must perform all desired functionality from the list above. For instance, it is not possible to use the
existing fixed functionality to compute fog but have afragment shader perform specialized texture access
and texture application. The fragment shader must be written to perform all three functions.

The fragment processor does not replace the fixed functionality graphics operations that occur at the back
end of the OpenGL pixel processing pipeline such as:

 Shading model

» Coverage

» Pixel ownership test
» Scissor

o Stipple

* Alphatest

* Depth test

* Stencil test

» Alphablending

The OpenGL Shading Language 6

OVERVIEW OF OPENGL SHADING

» Logica ops
» Dithering
» Plane masking

Related OpenGL state is also automatically tracked if used by the shader. A fragment shader cannot
change a fragment's x/y position. To support parallelism at the fragment processing level, fragment
shaders are written in away that expresses the computation required for a single fragment, and accessto
neighboring fragmentsis not allowed. A fragment shader is free to read multiple values from asingle
texture, or multiple values from multiple textures. The values computed by the fragment shader are
ultimately used to update frame-buffer memory or texture memory, depending on the current OpenGL
state and the OpenGL command that caused the fragments to be generated.

The OpenGL parameters for texture maps continue to define the behavior of the filtering operation,
borders, and wrapping. These operations are applied when atexture is accessed. The fragment shader is
free to use the resulting texel however it chooses. It is possible for a fragment shader to read multiple
values from atexture and perform a custom filtering operation. It is also possible to use a texture to
perform alookup table operation. In both cases the texture should have its texture parameters set so that
nearest neighbor filtering is applied on the texture access operations.

For each fragment, the fragment shader may compute color and/or depth, or completely discard the
fragment.

The results of the fragment shader are then sent on for further processing. The remainder of the OpenGL
pipeline remains as defined in OpenGL 1.4. Fragments are submitted to coverage application, pixel
ownership testing, scissor testing, alphatesting, stencil testing, depth testing, blending, dithering, logical
operations, and masking before ultimately being written into the frame buffer. The primary reason for
keeping the fixed functionality at the back end of the processing pipeline isthat the fixed functionality is
cheap and easy to implement in hardware. Making these functions programmabl e is more complex, since
read/modify/write operations can introduce significant instruction scheduling issues and pipeline stalls.
Most of these fixed functionality operations can be disabled, and alternate operations can be performed
within afragment shader if desired.

7 TheOpenGLShadingLanguage

BASICS

3 BASICS

3.1

3.2

Character Set

The source character set used for the OpenGL shading languagesis a subset of ASCII. It includesthe
following characters:

The letters a-z, A-Z, and the underscore (_).
The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces({ and }), caret (*), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (1), colon (:), semicolon (;), comma(,), and
question mark (?).

The number sign (#) for preprocessor use.

White space: the space character, horizontd tab, vertical tab, form feed, carriage-return, and line-
feed.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any these combinationsis simply referred to as a new-line.

In general, the language’s use of this character set is case sensitive.
There are no character or string datatypes, so no quoting characters are included.

There is no end-of-file character. The end of a source string is indicated by alength, not a character.

Source Strings

The sourcefor asingle shader isan array of strings of characters from the character set. A single shader is
made from the concatenation of these strings. Each string can contain multiple lines, separated by new-
lines. No new-lines need be present in a string; a single line can be formed from multiple strings. No
new-lines or other characters are inserted by the implementation when it concatenates the strings to form
asingle shader. Multiple shaders of the same language (vertex or fragment) can be linked together to
form asingle program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message appliesto. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new-lines that have been processed.

The OpenGL Shading Language 8

BASICS

3.3 Preprocessor

There isa preprocessor that processes the source strings before they are compiled.
The complete list of preprocessor directivesis as follows.

#
#def i ne
#undef

#if

#i f def
#i f ndef
#el se
#elif
#endi f

#error
#pragma

#ext ensi on
#ver si on

#1 i ne

The following operators are also available
defi ned
Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. 1t may aso be

followed by spaces and horizontal tabs, preceding the directive. Each directiveis terminated by a new-
line. Preprocessing does not change the number or relative location of new-linesin a source string.

The number sign (#) on aline by itself isignored. Any directive not listed above will cause a diagnostic
message and make the implementation treat the shader asill-formed.

#defineand #undef functionality are defined asis standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

_LINE__
__FILE__
__VERSION__

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new-
lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is currently
being processed.

9 TheOpenGLShadingLanguage

BASICS

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL shading
language. The version of the shading language described in this document will have VERSON___
substitute the decimal integer 110.

All macro names containing two consecutive underscores () are reserved for future use as predefined
macro names. All macro names prefixed with “GL_" (“GL" followed by a single underscore) are also
reserved.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate asis standard for C++ preprocessors.
Expressions following #if and #elif are restricted to expressions operating on literal integer constants, plus
identifiers consumed by the defined operator. Character constants are not supported. The operators
available are

Precedence Operator class Operators Associativity
1 (highest) parenthetical grouping O NA

2 unary defi nedI Right to Left

+ -~

3 multiplicative * | % L eft to Right
4 additive + - L eft to Right
5 bit-wise shift << >> L eft to Right
6 relational < > <= >= L eft to Right
7 equality = I= L eft to Right
8 bit-wise and & L eft to Right
9 bit-wise exclusive or A L eft to Right
10 bit-wise inclusive or | L eft to Right
11 logical and && L eft to Right
12 logical inclusive or [L eft to Right

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

There are no number sign based operators (no #, #@, ##, etc.), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the
C++ preprocessor, not those in the OpenGL Shading Language.

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the
processor targeted by the shader.

#error will cause the implementation to put a diagnostic message into the shader’s information log (see
the API in external documentation for how to access a shader’sinformation log). The message will be the
tokens following the #error directive, up to the first new-line. The implementation must then consider
the shader to beill-formed.

The OpenGL Shading Language 10

BASICS

#pragma allows implementation dependent compiler control. Tokensfollowing #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDCL

The STDGL pragmais used to reserve pragmas for use by future revisions of this language. No
implemention may use a pragmawhose first token is STDGL.

#pragma optinm ze(on)
#pragma optim ze(of f)

can be used to turn off optimizations as an aid in devel oping and debugging shaders. It can only be used
outside function definitions. By default, optimization isturned on for all shaders. The debug pragma

#pragma debug(on)
#pragma debug(of f)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

Shaders should declare the version of the language they are written to. The language version a shader is
written to is specified by

#ver si on nunber

where number must be 110 for this specification’s version of the language (following the same convention
as__VERSON__ above), in which case the directive will be accepted with no errors or warnings. Any
number lessthan 110 will cause an error to be generated. Any number greater than the latest version of the
language a compiler supports will also cause an error to be generated. Version 110 of the language does
not require shaders to include this directive, and shaders that do not include a#version directive will be
treated astargeting version 110. Compilers for subsequent versions of this language are guaranteed, on
seeing the “#ver sion 110" directive in ashader, to either support version 110, or to issue an error that they
do not support it.

The#version directive must occur in a shader before anything else, except for comments and white space.

By default, compilers of thislanguage must issue compile time syntactic, grammatical, and semantic
errors for shadersthat do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with to respect to extensions are declared with the
#extension directive

#ext ensi on extension_nanme : behavi or
#extension all : behavior

11 TheOpenGLShadingLanguage

BASICS

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior appliesto all extensions supported by the compiler. The
behavior can be one of the following

behavior Effect
require Behave as specified by the extension extension_name.

Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enabl e Behave as specified by the extension extension_name.
Warn on the #extension if the extension extension_name is not supported.
Give an error on the #extension if all is specified.

war n Behave as specified by the extension extension_name, except issue warnings on
any detectable use of that extension that is not supported by other enabled or
required extensions.

If all is specified, then warn on all detectable uses of any extension used.
Warn on the #extension if the extension extension_name is not supported.

di sabl e Behave (including issuing errors and warnings) as if the extension
extension_nameis not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended core
version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.

The extension directive isasimple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives mattersin setting the behavior for each extension: Directivesthat occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviorswarn and disable.

Theinitia state of the compiler is asif the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularitieslarger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

The OpenGL Shading Language 12

3.4

3.5

BASICS

Macro expansion is not done on lines containing #extension and #ver sion directives.
#linemust have, after macro substitution, one of the following two forms:

#line line
#l ine |line source-string-nunber

where line and source-string-number are constant integer expressions. After processing this directive
(including its new-line), the implementation will behave asiif it is compiling at line number line+ 1 and
source string number source-string-number. Subseguent source strings will be numbered sequentially,
until another #line directive overrides that numbering.

Comments

Comments are delimited by /* and */, or by // and anew-line. The begin comment delimiters (/* or //) are
not recognized as comment delimiters inside of a comment, hence comments cannot be nested. If a
comment resides entirely within asingleline, it istreated syntactically as a single space.

Tokens

The language is a sequence of tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator

13 TheOpenGLsShadingLanguage

BASICS

3.6 Keywords

The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

attribute const uniform varying
break continue do for while
if else
in out inout
float int void bool true false
discard return
mat2 mat3 mat4
vec2 vec3 vecd ivec2 ivec3 ivecd bvec2 bvec3 bvecd
samplerlD sampler2D sampler3D samplerCube sampler 1DShadow sampler2DShadow
struct
The following are the keywords reserved for future use. Using them will result in an error:
asm
class union enum typedef template this packed
goto switch default
inline noinline volatile public static extern external interface
long short double half fixed unsigned
input output
hvec2 hvec3 hvec4 dvec2 dvec3 dvecd fvec2 fvec3 fvecd
sampler2DRect sampler3DRect sampler 2DRectShadow
sizeof cast
namespace using

In addition, al identifiers containing two consecutive underscores (__) are reserved as possible future
keywords.

3.7 ldentifiers

Identifiers are used for variable names, function names, struct names, and field selectors (field selectors
select components of vectors and matrices similar to structure fields, as discussed in Section 5.5 “Vector
Components’ and Section 5.6 “Matrix Components”). ldentifiers have the form

The OpenGL Shading Language 14

BASICS

identifier
nondigit
identifier nondigit
identifier digit
nondigit: one of
_abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
digit: one of
0123456789
Identifiers starting with “gl_" are reserved for use by OpenGL, and may not be declared in a shader as
either avariable or afunction.

15 TheOpenGLsShadingLanguage

VARIABLES AND TYPES

4 \ARIABLES AND TYPES

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionaly qualifiers. A variableis declared by specifying its type followed by one or more names
separated by commas. In many cases, avariable can beinitialized as part of its declaration by using the
assignment operator (=). The grammar near the end of this document provides a full reference for the
syntax of declaring variables.

User-defined types may be defined using struct to aggregate a list of existing types into a single name.
The OpenGL Shading Language istype safe. There are no implicit conversions between types.

4.1 Basic Types

The OpenGL Shading Language supports the following basic data types.

void for functions that do not return avaue

bool a conditional type, taking on values of true or false
int asigned integer

float asingle floating-point scalar

vec2 atwo component floating-point vector

vec3 athree component floating-point vector

vecd afour component floating-point vector
bvec2 atwo component Boolean vector

bvec3 athree component Boolean vector

bveca afour component Boolean vector

ivec2 atwo component integer vector

ivec3 athree component integer vector

ivecd afour component integer vector

mat2 a 2x2 floating-point matrix

mat3 a 3x3 floating-point matrix

mat4 a4x4 floating-point matrix

sampler1D ahandle for accessing a 1D texture
sampler2D ahandle for accessing a 2D texture
sampler3D ahandle for accessing a 3D texture

sampler Cube ahandle for accessing a cube mapped texture

The OpenGL Shading Language 16

4.1.1

4.1.2

4.1.3

VARIABLES AND TYPES

sampler 1IDShadow |ahandle for accessing a 1D depth texture with comparison
sampler2DShadow |a handle for accessing a 2D depth texture with comparison

In addition, a shader can aggregate these using arrays and structures to build more complex types.

There are no pointer types.

Void
Functionsthat do not return avalue must be declared asvoid. Thereisno default function return type.

Booleans

To make conditional execution of code easier to express, the type bool is supported. Thereisno
expectation that hardware directly supports variables of thistype. It isagenuine Boolean type, holding
only one of two values meaning either true or false. Two keywordstrue and false can be used as Boolean
constants. Booleans are declared and optionally initialized asin the follow example:

bool success; /] declare “success” to be a Bool ean
bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) can be any expression whose typeis bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

Integers

Integers are mainly supported as a programming aid. At the hardware level, real integers would aid
efficient implementation of loops and array indices, and referencing texture units. However, thereis no
requirement that integersin the language map to an integer type in hardware. It is not expected that
underlying hardware has full support for awide range of integer operations. Because of their intended
(limited) purpose, integers are limited to 16 bits of precision, plus a sign representation in both the vertex
and fragment languages. An OpenGL Shading Language implementation may convert integers to floats
to operate on them. An implementation is allowed to use more than 16 bits of precision to manipulate
integers. Hence, there is no portable wrapping behavior. Shadersthat overflow the 16 bits of precision
may not be portable.

Integers are declared and optionally initialized with integer expressions as in the following example:

int i, j = 42;
Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16) as
follows.

integer-constant :
decimal -constant
octal-constant
hexadeci mal-constant

decimal-constant :
nonzero-digit
decimal-constant digit

17 TheOpenGLsShadingLanguage

VARIABLES AND TYPES

4.1.4

octal-constant :
0
octal-constant octal-digit

hexadecimal -constant :
Ox hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit
digit :
0
nonzero-digit
nonzero-digit : one of
123456789

octal-digit : one of
01234567

hexadecimal-digit : one of
0123456789
abcdef
ABCDEF

No white space is allowed between the digits of an integer constant, including after the leading O or after

the leading Ox or OX of aconstant. A leading unary minussign (-) isinterpreted as an arithmetic unary
negation, not as part of the constant. There are no letter suffixes.

Floats

Floatsare availablefor usein avariety of scalar calculations. Floating-point variables are defined as in the
following example:

float a, b = 1.5;

Asan input value to one of the processing units, a floating-point variable is expected to match the |EEE
single precision floating-point definition for precision and dynamic range. It is not required that the
precision of internal processing match the |EEE floating-point specification for floating-point operations,
but the guidelines for precision established by the OpenGL 1.4 specification must be met. Similarly,
treatment of conditions such as divide by 0 may lead to an unspecified result, but in no case should such a
condition lead to the interruption or termination of processing.

Floating-point constants are defined as follows.

floating-constant :
fractional -constant exponent-part,
digit-seguence exponent-part
fractional-constant :
digit-sequence . digit-sequence
digit-sequence .
. digit-sequence

The OpenGL Shading Language 18

VARIABLES AND TYPES

exponent-part :
e signgyy digit-sequence
E signy digit-sequence
sign : one of
+—
digit-sequence :
digit
digit-sequence digit
A decimal point (.) is not needed if the exponent part is present.

4.1.5 Vectors
The OpenGL Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, or Booleans. Floating-point vector variables can be used to store avariety
of thingsthat are very useful in computer graphics: colors, normals, positions, texture coordinates, texture
lookup results and the like. Boolean vectors can be used for component-wise comparisons of numeric
vectors. Defining vectors as part of the shading language allows for direct mapping of vector operations
on graphics hardware that is capable of doing vector processing. In general, applications will be able to
take better advantage of the parallelism in graphics hardware by doing computations on vectors rather
than on scalar values. Some examples of vector declaration are:

vec2 texcoordl, texcoord2;
vec3 position;

vec4 nmy RGBA;

ivec2 texturelLookup;
bvec3 | essThan;

Initialization of vectors can be done with constructors, which are discussed shortly.

4.1.6 Matrices

Matrices are another useful data type in computer graphics, and the OpenGL Shading Language defines
support for 2X2, 3X3, and 4X4 matrices of floating point numbers. Matrices are read from and written to
in column magjor order. Example matrix declarations:

mat 2 mat 2D;

mat 3 opt Matri x;
mat 4 vi ew, projection;

Initialization of matrix valuesis done with constructors (described in Section 5.4 “ Constructors”).

4.1.7 Samplers

Sampler types (e.g. sampler 2D) are effectively opagque handlesto textures. They are used with the built-
in texture functions (described in Section 8.7 “Texture Lookup Functions’) to specify which texture to
access. They can only be declared as function parameters or uniforms (see Section 4.3.5 “Uniform”).
Samplers are not alowed to be operands in expressions nor can they be assigned into. Asuniforms, they
areinitialized with the OpenGL API. Asfunction parameters, only samplers may be passed to samplers

19 TheOpenGLsShadingLanguage

VARIABLES AND TYPES

4.1.8

of matching type. This enables consistency checking between shader texture accesses and OpenGL
texture state before a shader is run.

Structures

User-defined types can be created by aggregating other already defined types into a structure using the
struct keyword. For example,

struct light {
float intensity;
vec3 position;

} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

I'i ght IightVar?2;

More formally, structures are declared as follows. However, the complete correct grammar isasgivenin
Section 9 “ Shading L anguage Grammar”.

struct-definition :
qualifiergy struct nameyy { member-list } declaratorsypy ;

member-list :

member-declaration;

member-declaration member-list;
member-declaration :

basic-type declarators;

embedded-struct-definition
embedded-struct-definition:

struct nameg; { member-list } declarator;

where name becomes the user-defined type, and can be used to declare variablesto be of this new type.
The name shares the same name space as other variables and types, with the same scoping rules. The
optiona qualifier only applies to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration. Member declarators do not contain any qualifiers.
Nor do they contain any bit fields. Member types must be either already defined (there are no forward
references), or defined in-place by embedding another struct definition. Member declarations cannot
contain initializers. Member declarators can contain arrays. Such arrays must have a size specified, and
the size must be an integral constant expression that's greater than zero (see Section 4.3.3 “Integral
Constant Expressions’). Each level of structure has its own namespace for names given in member
declarators; such names need only be unique within that namespace.

Anonymous structures are not supported; so embedded structures must have a declarator. A name given
to an embedded struct is scoped at the same level as the struct it is embedded in.

Structures can be initialized at declaration time using constructors, as discussed in Section 5.4.3
“Structure Constructors’.

The OpenGL Shading Language 20

4.1.9

4.2

VARIABLES AND TYPES

Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing an optional size. When an array sizeis specified in adeclaration, it must be an integral constant
expression (see Section 4.3.3 “Integral Constant Expressions”) greater than zero. If an array isindexed
with an expression that is not an integral constant expression or passed as an argument to a function, then
its size must be declared before any such use. It islega to declare an array without a size and then later
re-declare the same name as an array of the same type and specify asize. Itisillegd to declare an array
with a size, and then later (in the same shader) index the same array with an integral constant expression
greater than or equal to the declared size. Itisalsoillegal to index an array with a negative constant
expression. Arrays declared as formal parameters in afunction declaration must specify asize.
Undefined behavior results from indexing an array with anon-constant expression that’s greater than or
equal to the array’ssize or lessthan 0. Only one-dimensional arrays may be declared. All basic typesand
structures can be formed into arrays. Some examples are:

float frequencies[3];

uni form vec4 |ightPosition[4];
light lights[];

const int nunLights = 2;

I'i ght Iights[nuniights];

There is no mechanism for initializing arrays at declaration time from within a shader.

Scoping

The scope of avariable is determined by whereit isdeclared. If it isdeclared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
itisdeclared in. If itisdeclared in awhiletest or afor statement, then it is scoped to the end of the
following sub-statement. Otherwise, if it is declared as a statement within a compound statement, it is
scoped to the end of that compound statement. If itisdeclared as aparameter in afunction definition, itis
scoped until the end of that function definition. A function body has a scope nested inside the function’s
definition. Theif statement’s expression does not allow new variables to be declared, hence does not
form anew scope.

A variable declared as an empty array can be re-declared as an array of the same base type. Otherwise,
within one compilation unit, a variable with the same name cannot be re-declared in the same scope.
However, a nested scope can override an outer scope’s declaration of a particular variable name.
Declarations in a nested scope provide separate storage from the storage associated with an overridden
name.

All variables in the same scope share the same name space. Functions names are always identifiable as
function names based on context, and they have their own name space.

Shared globals are global variables declared with the same name in independently compiled units
(shaders) of the same language (vertex or fragment) that are linked together to make a single program.
Shared globals share the same namespace, and must be declared with the same type. They will share the
same storage. Shared global arrays must have the same base type and the same size. Scalars must have
exactly the same type name and type definition. Structures must have the same name, sequence of type

21 TheOpenGLsShadingLanguage

VARIABLES AND TYPES

names, and type definitions, and field namesto be considered the same type. Thisrule applies recursively
for nested or embedded types. All initializers for ashared global must have the same value, or alink error
will result.

4.3 Type Qualifiers

Variable declarations may have one or more qualifiers, specified in front of thetype. These are
summarized as

<none: default > local read/write memory, or an input parameter to a function

const a compile-time constant, or afunction parameter that is read-only

attribute linkage between a vertex shader and OpenGL for per-vertex data

uniform value does not change across the primitive being processed,
uniforms form the linkage between a shader, OpenGL, and the
application

varying linkage between a vertex shader and a fragment shader for
interpolated data

in for function parameters passed into a function

out for function parameters passed back out of afunction, but not
initialized for use when passed in

inout for function parameters passed both into and out of afunction

Global variables can only use the qualifiers const, attribute, uniform, or varying. Only one may be
specified.

L ocal variables can only use the qualifier const.

Function parameters can only use thein, out, inout, or const qualifiers. Parameter qualifiers are
discussed in more detail in Section 6.1.1 “ Function Calling Conventions”.

Function return types and structure fields do not use qualifiers.

Datatypes for communication from one run of a shader to its next run (to communicate between
fragments or between vertices) do not exist. Thiswould prevent parallel execution of the same shader on
multiple vertices or fragments.

Declarations of globals without a qualifier, or with just the const qualifier may include initializers, in
which case they will be initialized before the first line of main() is executed. Such initializers must have
constant type. Global variableswithout qualifiers that are not initialized in their declaration or by the
application will not beinitialized by OpenGL, but rather will enter main() with undefined values.

4.3.1 Default Qualifiers
If no qualifier is present on aglobal variable, then the variable has no linkage to the application or shaders
running on other processors. For either global or local unqualified variables, the declaration will appear
to allocate memory associated with the processor it targets. Thisvariablewill provide read/write accessto
this allocated memory.

The OpenGL Shading Language 22

4.3.2

4.3.3

4.3.4

VARIABLES AND TYPES

Const

Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more descriptive
shaders than using hard-wired numerical constants. The const qualifier can be used with any of the basic
datatypes. It is an error to write to aconst variable outside of its declaration, so they must be initialized
when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

Structure fields may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor.

Initializers for const declarations must be formed from literal values, other const variables (not including
function call paramaters), or expressions of these.

Constructors may be used in such expressions, but function calls may not.

Integral Constant Expressions
An integral constant expression can be one of

 alitera integer value

» aglobal orlocal scaar integer variable quaified as const, not including function parameters
qualified as const

» an expression whose operands are integral constant expressions, including constructors, but
excluding function calls.

Attribute

Theattribute qualifier is used to declare variables that are passed to a vertex shader from OpenGL on a
per-vertex basis. It isan error to declare an attribute variable in any type of shader other than a vertex
shader. Attribute variables are read-only as far as the vertex shader is concerned. Valuesfor attribute
variables are passed to a vertex shader through the OpenGL vertex API or as part of avertex array. They
convey vertex attributes to the vertex shader and are expected to change on every vertex shader run. The
attribute qualifier can be used only with the data typesfloat, vec2, vec3, vec4, mat2, mat3, and mat4.
Attribute variables cannot be declared as arrays or structures.

Example declarations:

attribute vec4 position;
attribute vec3 normal;
attribute vec2 texCoord;

All the standard OpenGL vertex attributes have built-in variable names to allow easy integration between
user programs and OpenGL vertex functions. See Section 7 “Built-in Variables” for alist of the built-in
attribute names.

It is expected that graphics hardware will have a small nhumber of fixed locations for passing vertex
attributes. Therefore, the OpenGL Shading language defines each non-matrix attribute variable as having
space for up to four floating-point values (i.e., avecd). Thereis an implementation dependent limit on the

23 TheOpenGLsShadingLanguage

VARIABLES AND TYPES

4.3.5

4.3.6

number of attribute variables that can be used and if thisis exceeded it will cause alink error. (Declared
attribute variables that are not used do not count against this limit.) A float attribute counts the same
amount against thislimit as a vec4, so applications may want to consider packing groups of four unrelated
float attributes together into aveca to better utilize the capabilities of the underlying hardware. A mat4
attribute will use up the equivalent of 4 vec4 attribute variable locations, a mat3 will use up the equivalent
of 3 attribute variable locations, and a mat2 will use up 2 attribute variable locations. How this spaceis
utilized by the matrices is hidden by the implementation through the APl and language.

Attribute variables are required to have global scope, and must be declared outside of function bodies,
before their first use.

Uniform

The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only and are initialized either directly by an
application via APl commands, or indirectly by OpenGL.

An example declaration is:

uni form vec4 |ightPosition;

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
typeisastructure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if thisis exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit. The number of user-defined
uniform variables and the number of built-in uniform variables that are used within a shader are added
together to determine whether available uniform storage has been exceeded.

If multiple shaders are linked together, then they will share a single global uniform name space. Hence,
types of uniforms with the same name must match across all shadersthat are linked into asingle
executable.

Varying

Varying variables provide the interface between the vertex shader, the fragment shader, and the fixed
functionality between them. The vertex shader will compute values per vertex (such as color, texture
coordinates, etc.) and write them to variables declared with the varying qualifier. A vertex shader may
also read varying variables, getting back the same valuesit has written. Reading avarying variablein a
vertex shader returns undefined values if it is read before being written.

By definition, varying variables are set per vertex and areinterpolated in a perspective-correct manner
over the primitive being rendered. If single-sampling, the interpolated valueisfor the fragment center. If
multi-sampling, the interpolated value can be anywhere within the pixel, including the fragment center or
one of the fragment samples.

A fragment shader may read from varying variables and the value read will be the interpolated value, as a
function of the fragment's position within the primitive. A fragment shader can not writeto avarying
variable.

The OpenGL Shading Language 24

VARIABLES AND TYPES

The type of varying variableswith the same name declared in both the vertex and fragments shaders must
match, otherwise the link command will fail. Only those varying variables used (i.e. read) in the fragment
shader must be written to by the vertex shader; declaring superfluous varying variables in the vertex
shader is permissible.

Varying variables are declared asin the following example:

varying vec3 nornal ;

The varying qualifier can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and
mat4, or arrays of these. Structures cannot be varying.

If no vertex shader is active, the fixed functionality pipeline of OpenGL will compute values for the built-
in varying variables that will be consumed by the fragment shader. Similarly, if no fragment shader is
active, the vertex shader is responsible for computing and writing to the varying variables that are needed
for OpenGL's fixed functionality fragment pipeline.

Varying variables are required to have global scope, and must be declared outside of function bodies,
before their first use.

25 TheOpenGLsShadingLanguage

OPERATORS AND EXPRESSIONS

5 OPERATORS AND EXPRESSIONS

5.1

Operators

The OpenGL Shading Language has the following operators. Those marked reserved areillegal.

Precedence
1 (highest)
2

17 (lowest)

Thereisno address-of operator nor a dereference operator. Thereis no typecast operator, constructors are

used instead.

Operator class
parenthetical grouping

array subscript
function call and constructor

structure field selector, swizzler
post fix increment and decrement

prefix increment and decrement
unary (tilde is reserved)

multiplicative (modulus reserved)
additive

bit-wise shift (reserved)
relational

equality

bit-wiseand (reserved)
bit-wise exclusive or (reserved)
bit-wise inclusive or (reserved)
logical and

logical exclusive or

logical inclusive or

selection

assignment
arithmetic assignments

(modulus, shift, and bit-wise are
reserved)

sequence

The OpenGL Shading Language 26

Operators
0

[]
O

++ -
++ -
+ -~

*l %

+= -=
*= [= Op=
<<= >>=

&= N= |:

Associativity
NA
L eft to Right

Right to Left

L eft to Right
L eft to Right
L eft to Right
L eft to Right
L eft to Right
Left to Right
L eft to Right
L eft to Right
L eft to Right
L eft to Right
L eft to Right
Right to Left
Right to Left

L eft to Right

OPERATORS AND EXPRESSIONS

5.2 Array Subscripting

Array elements are accessed using the array subscript operator ([]). Thisisthe only operator that
operates on arrays. An example of accessing an array element is

di ffuseColor += lightintensity[3] * NdotL;

Array indices start at zero. Arrays elements are accessed using an expression whose type is an integer.

Behavior is undefined if ashader subscripts an array with an index lessthan O or greater than or equal to
the size the array was declared with.

5.3 Function Calls

If afunction returns avaue, then acall to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in Section 6.1 “ Function Definitions’.

5.4 Constructors

Constructors use the function call syntax, where the function name is a basi c-type keyword or structure
name, to make values of the desired type for usein aninitializer or an expression. (See Section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce alarger type to a smaller type.

Thereis no fixed list of constructor prototypes. Constructors are not built-in functions. Syntactically, all
lexically correct parameter lists are vaid. Semantically, the number of parameters must be of sufficient
size and correct type to perform the initialization. It isan error to include so many argumentsto a
constructor that they cannot al be used. Detailed rules follow. The prototypes actually listed below are
merely a subset of examples.

5.4.1 Conversion and Scalar Constructors
Converting between scalar typesis done as the following prototypes indicate:

i nt(bool) /]l converts a Bool ean value to an int
int(float) // converts a float value to an int
float(bool) // converts a Bool ean value to a fl oat
float(int) // converts an integer value to a float
bool (float) // converts a float value to a Bool ean
bool (int) /]l converts an integer value to a Bool ean

When constructors are used to convert afloat to an int, the fractional part of the floating-point valueis
dropped.

27 TheOpenGLsShadingLanguage

OPERATORS AND EXPRESSIONS

5.4.2

When a constructor is used to convert anint or afloat to bool, 0 and 0.0 are converted to false, and non-
zero values are converted to true. When a constructor is used to convert abool to anint or float, falseis
converted to 0 or 0.0, and trueisconverted to 1 or 1.0.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there isasingle scalar parameter to a vector constructor, it isused to initialize all components of the
constructed vector to that scalar’s value. If thereis asingle scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining componentsinitialized
t0 0.0. If there are non-scalar parameters, and/or multiple scalar parameters, they will be assigned in
order, from left to right, to the components of the constructed value. In this case, there must be enough
components provided in the parameters to provide an initializer for every component in the constructed
value. If more components are provided in the last used argument to a constructor than are needed to
initialize the constructed value, the left most components of that argument are used, and the remaining
onesareignored. Itisan error to provide extra arguments beyond this last used argument. Matrices will
be constructed in column major order. It isan error to construct matrices from other matrices. Thisis
reserved for future use.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of the
object being constructed, the scalar construction rules (above) are used to convert the parameters.

Some useful vector constructors are as follows:

vec3(fl oat) // initializes each conponent of a vec3 with the fl oat
vec4(ivecd) /1 makes a vec4 froman ivecd4, with conponent-w se conversion
vec2(float, float) /1l initializes a vec2 with 2 floats
ivec3(int, int, int) /[l initializes an ivec3 with 3 ints

bvec4(int, int, float, float) // initializes with 4 Bool ean conversi ons

vec2(vec3) // drops the third conponent of a vec3
vec3(vecd4) // drops the fourth conponent of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(fl oat, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4col or = vec4(0.0, 1.0, 0.0, 1.0);
vecdrgba = vec4(1l.0); /1 sets each conponent to 1.0

The OpenGL Shading Language 28

OPERATORS AND EXPRESSIONS

vec3rgb = vec3(color); /1 drop the 4th conponent

To initialize the diagonal of a matrix with all other elements set to zero:

mat 2(f | oat)
mat 3(f | oat)
mat 4(f | oat)

To initialize amatrix by specifying vectors, or by al 4, 9, or 16 floats for mat2, mat3 and mat4
respectively. The floats are assigned to elements in column major order.

mat 2(vec2, vec2);

mat 3(vec3, vec3, vec3);
mat 4(vec4, vec4d, vecd, vecd);

mat 2(float, float,
float, float);

mat 3(float, float, float,
float, float, float,
float, float, float);

mat 4(float, float, float, float,
float, float, float, float,
float, float, float, float,
float, float, float, float);

A wide range of other possibilities exist, aslong as enough components are present to initialize the matrix.
However, construction of a matrix from other matricesis currently reserved for future use.

5.4.3 Structure Constructors

Once astructureis defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
float intensity;
vec3 position;

b
light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

The arguments to the constructor must be in the same order and of the same type asthey were declared in
the structure.

Structure constructors can be used as initializers or in expressions.

5.5 Vector Components

The names of the components of a vector are denoted by asingle letter. Asanotationa convenience,
several letters are associated with each component based on common usage of position, color or texture

29 TheOpenGLsShadingLanguage

OPERATORS AND EXPRESSIONS

coordinate vectors. The individual components of a vector can be selected by following the variable
name with period (.) and then the component name.

The component names supported are:

{x,y,z, w} |useful when accessing vectorsthat represent points or normals
{r,g9,b,a} |useful when accessing vectorsthat represent colors
{s,t,p, g} |useful when accessing vectorsthat represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.

Note that the third component of atexture, r in OpenGL, has been renamed p so asto avoid the confusion
withr (for red) in acolor.

A ccessing components beyond those declared for the vector typeis an error so, for example:

vec2 pos;
pos. x /1 is |legal
pos. z /1 is illegal

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vecd v4;
vd.rgba; // is a vecd4 and the sane as just using v4,
v4.rgb; /Il is a vec3,

v4. b; // is a float,

V4. Xy; /1 is a vec2,

v4.xgba; // is illegal - the conponent nanes do not cone from
I the sanme set.

The order of the components can be different to swizzle them, or replicated:

vecd4 pos = vec4(1l.0, 2.0, 3.0, 4.0);
vecd sw z = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vecd4 pos = vec4(1l.0, 2.0, 3.0, 4.0);

pos. xw = vec2(5.0, 6.0); /! pos = (5.0, 2.0, 3.0, 6.0)

pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)

pos. xx = vec2(3.0, 4.0); /1 illegal - 'x' used twice

pos.xy = vec3(1l.0, 2.0, 3.0);// illegal - msmatch between vec2 and vec3

To form an I-value, swizzling must be applied to an |-value of vector type, contain no duplicate
components, and resultsin an |-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors to provide numeric indexing. Soin

The OpenGL Shading Language 30

5.6

5.7

5.8

OPERATORS AND EXPRESSIONS

vec4 pos;

pos| 2] refersto the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, aswell as a generic way of accessing components. Any integer expression can be used as the
subscript. Thefirst component isat index zero. Behavior isundefined if theindex is greater than or equal
to the size of the vector.

Matrix Components

The components of amatrix can be accessed using array subscripting syntax. Applying asingle subscript
to amatrix treats the matrix as an array of column vectors, and selects a single column, whose typeisa
vector of the same size as the matrix. The leftmost columniscolumn 0. A second subscript would then
operate on the column vector, as defined earlier for vectors. Hence, two subscripts select a column and
then arow.

mat4 m

nf 1] = vec4(2.0); /'l sets the second colum to all 2.0

n0][0] = 1.0; /1 sets the upper left elenent to 1.0

n2][3] = 2.0; /] sets the 4th elenent of the third colum to 2.0

Behavior is undefined when accessing a component outside the bounds of amatrix (e.g., component
[3][3] of amat3).
Structures and Fields

Aswith vector components and swizzling, the fields of a structure are also selected using the period (.).

In total, the following operators are allowed to operate on a structure;

structure field selector

equality = I=

assignment =
The equality and assignment operators are only valid if the two operands’ types are of the same declared
structure. When using the equality operators, two structures are equal if and only if all the fields are
component-wise equal.
Assignments
Assignments of values to variable names are done with the assignment operator (=), like

I val ue = expression

The assignment operator stores the value of expression into Ivalue. 1t will compile only if expression and
Ivalue have the sametype. All desired type-conversions must be specified explicitly via a constructor. L-

31 TheOpenGLsShadingLanguage

OPERATORS AND EXPRESSIONS

values must be writable. Variablesthat are built-in types, entire structures, structure fields, |-values with
the field selector (.) applied to select components or swizzles without repeated fields, and I-values
dereferenced with the array subscript operator ([]) are all I-values. Other binary or unary expressions,
non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot be |-val ues.
The ternary operator (?:) isalso not allowed as an |-value.

Expressions on the |eft of an assignment are evaluated before expressions on the right of the assignment.
Other assignment operators are

* The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide
into (/=). Theexpression

I val ue op= expression
is equivalent to
lval ue = |l val ue op expression

and thel-value and expression must satisfy the semantic requirements of both op and equals
-

* The assignments modulus into (% =), left shift by (<<=), right shift by (>>=), inclusive or
into (|=), and exclusive or into (~=). These operators are reserved for future use.

Reading a variable before writing (or initializing) it islegal, however the value is undefined.

5.9 Expressions

Expressionsin the shading language are built from the following:

* Constants of type bool, int, float, all vector types, and al matrix types.

¢ Constructors of all types.

¢ Variable names of all types, except array names not followed by a subscript.

* Subscripted array names.

* Function calsthat return values.

¢ Component field selectors and array subscript results.

* Parenthesized expression. Parentheses can be used to group operations. Operations within
parentheses are done before operations across parentheses.

* The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that
operate on integer and floating-point typed expressions (including vectors and matrices).
The two operands must be the same type, or one can be a scaar float and the other a float
vector or matrix, or one can be ascalar integer and the other an integer vector. Additionally,
for multiply (*), one can be a vector and the other a matrix with the same dimensional size
of the vector. These result in the same fundamental type (integer or float) asthe expressions
they operate on. If one operand is scalar and the other is a vector or matrix, the scalar is
applied component-wise to the vector or matrix, resulting in the same type as the vector or
matrix. Dividing by zero does not cause an exception but does result in an unspecified

The OpenGL Shading Language 32

OPERATORS AND EXPRESSIONS

value. Multiply (*) applied to two vectors yields a component-wise multiply. Multiply (*)
applied to two matrices yields a linear algebraic matrix multiply, not a component-wise
multiply. Usethe built-in functions dot, cross, and matrixCompMult to get, respectively,
vector dot product, vector cross product, and matrix component-wise multiplication.

* The operator modulus (%) is reserved for future use.

¢ The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and
++) that operate on integer or floating-point values (including vectors and matrices). These
result with the same type they operated on. For post- and pre-increment and decrement, the
expression must be one that could be assigned to (an I-value). Pre-increment and pre-
decrement add or subtract 1 or 1.0 to the contents of the expression they operate on, and the
value of the pre-increment or pre-decrement expression is the resulting value of that
modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to
the contents of the expression they operate on, but the resulting expression has the
expression’s value before the post-increment or post-decrement was executed.

* Therelational operators greater than (>), lessthan (<), greater than or equal (>=), and less
than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The
result is scalar Boolean. The operands' types must match. To do component-wise
comparisons on vectors, use the built-in functions lessT han, lessThanEqual,
greater Than, and greater ThanEqual.

* Theequality operators equal (==), and not equal ('=) operate on al types except arrays.
They resultin ascaar Boolean. For vectors, matrices, and structures, all components of the
operands must be equal for the operandsto be considered equal. To get component-wise
equality results for vectors, use the built-in functions equal and notEqual.

* Thelogical binary operatorsand (& &), or (||), and exclusive or (**). They operate only
on two Boolean expressions and result in a Boolean expression. And (& &) will only
evaluate the right hand operand if the left hand operand evaluated to true. Or (||) will only
evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or
(") will dways evaluate both operands.

¢ Thelogical unary operator not (!). It operatesonly on a Boolean expression and resultsin a
Boolean expression. To operate on a vector, use the built-in function not.

* Thesequence (,) operator that operates on expressions by returning the type and value of
the right-most expression in a comma separated list of expressions. All expressions are
evaluated, in order, from left to right.

* Theternary selection operator (?:). It operates on three expressions (expl ? exp2 : exp3).
This operator evaluates the first expression, which must result in ascalar Boolean. If the
result istrue, it selects to evaluate the second expression, otherwise it selectsto evaluate the
third expression. Only one of the second and third expressionsis evaluated. The second
and third expressions must be the sametype, but can be of any type other than an array. The
resulting type isthe same as the type of the second and third expressions.

* Operatorsand (&), or (|), exclusive or (*), not (~), right-shift (>>), left-shift (<<). These
operators are reserved for future use.

For a compl ete specification of the syntax of expressions, see Section 9 “ Shading L anguage Grammar”.

When the operands are of a different type they must fit into one of the following rules:

33 TheOpenGLsShadingLanguage

OPERATORS AND EXPRESSIONS

» oneof the argumentsisafloat (i.e. ascalar), in which case theresult isasif the scalar value
was replicated into a vector or matrix before being applied.

 theleft argument isafloating-point vector and the right is a matrix with a compatible
dimension in which case the * operator will do arow vector matrix multiplication.

+ theleft argument isamatrix and the right is a floating-point vector with a compatible
dimension in which case the * operator will do a column vector matrix multiplication.

5.10 Vector and Matrix Operations

With afew exceptions, operations are component-wise. When an operator operates on avector or matrix,
it is operating independently on each component of the vector or matrix, in a component-wise fashion.
For example,

vec3 v, u;
float f;

v =u + f;

will be equivalent to

===
N < X
1 n
ccc
N < X
+ + +
—_ —h —h

And
vec3 v, U, w
W=V + Uu;
will be equivalent to

W. X
w.y
W. Z

nono
===
N < x
+ + +
cec
N=< X

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply. They require the
size of the operands match.

vec3 v, U;
mat3 m

u=v=*m
is equivalent to

dot(v, nf0]); // nf0] is the left colum of m
dot(v, nf1]); // dot(a,b) is the inner (dot) product of a and b
dot (v, ni2]);

Cc cCc
N < X
o

The OpenGL Shading Language 34

OPERATORS AND EXPRESSIONS

And

u=m?=*yv,;

is equivalent to

ux =n0]l.x *v.x + nf1].x * v.y + nf2].x * v.z;

uy =n0]l.y * v.x + nf1].y * v.y + nf2].y * v.z;

u.z =n0].z* v.x + nfl1].z * v.y + nf2].z * v.z;
And

mat m n, r;
r =m* n;

is equivalent to

r{0].x = nf0].x * n[O].x + n1l].x * n[O].y + ni2].x * n[O].z;
r{1].x = nf0].x * n[1].x + nf1].x * n[1].y + nf2].x * n[1].z;
r{2].x = nf0].x * n[2].x + nm1l].x * n[2].y + nf2].x * n[2].z;
r[0].y = mMO0].y * nf[0].x + n{1].y * n[O].y + nm2].y * n[0].z;
r[1].y = mMO0].y * n[1].x + n{1].y * n[1].y + mM2].y * n[1].z;
r[2].y = mMO0].y * n[2].x + n{1].y * n[2].y + mM2].y * n[2].z;
r[0].z = mM0].z * n[0].x + n{1].z * n[O].y + nm2].z * n[0].z;
r[1].z = mM0].z * n[1].x + n{1].z * n[1].y + nm2].z * n[1].z;
r[2].z = mM0].z * n[2].x + n{1].z * n[2].y + nm2].z * n[2].z;

and similarly for vectors and matrices of size 2 and 4.

All unary operations work component-wise on their operands. For binary arithmetic operations, if the two
operands are the same type, then the operation is done component-wise and produces a result that is the
sametype asthe operands. |f one operand is ascalar float and the other operand isavector or matrix, then
the operation proceeds as if the scalar value was replicated to form a matching vector or matrix operand.

35 TheOpenGLsShadingLanguage

STATEMENTS AND STRUCTURE

6 STATEMENTS AND STRUCTURE

The fundamental building blocks of the OpenGL Shading L anguage are:

 statements and declarations

« function definitions

» selection (if-else)

* iteration (for, while, and do-while)

» jumps (discard, return, break, and continue)

The overall structure of a shader is asfollows

translation-unit:
global-declaration
translation-unit global-declaration

global-declaration:
function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition:
function-prototype { statement-list }

statement-list:
statement
statement-list statement

statement:
compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:
{ statement-list }

simpl e-statement:
declaration-statement
expressi on-statement
sel ection-statement
iter ation-statement
jump-statement

The OpenGL Shading Language 36

6.1

STATEMENTS AND STRUCTURE

Simple declaration, expression, and jump statements end in a semi-colon.

This above is dightly simplified, and the complete grammar specified in Section 9 “Shading L anguage
Grammar” should be used as the definitive specification.

Declarations and expressions have aready been discussed.

Function Definitions

Asindicated by the grammar above, avalid shader is a sequence of globa declarations and function
definitions. A function is declared as the following example shows:

/| prototype
returnType functionNane (typeO arg0O, typel argl, ..., typen argn);

and afunction is defined like

/] definition
returnType functionNane (typeO argO, typel argl, ..., typen argn)

/1 do sone conputation
return returnVal ue;

Where returnType must be present and include atype. Each of the typeN must include atype and can
optionaly include the qudifier in, out, inout, and/or const.

A function iscalled by using its name followed by alist of argumentsin parentheses.

Arrays are allowed as arguments, but not as the return type. When arrays are declared as formal
parameters, their size must beincluded. Anarray is passed to afunction by using the array name without
any subscripting or brackets, and the size of the array argument passed in must match the size specified in
the formal parameter declaration.

Structures are also allowed as arguments. The return type can also be structure.

See Section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with abody before they are called. For
example:

float myfunc (float f, /1 f is an input paraneter
out float g); /!l g is an output paraneter

Functionsthat return no value must be declared as void. Functions that accept no input arguments need
not usevoid in the argument list because prototypes are required and therefore there is no ambiguity when
an empty argument list "()" is declared. Theidiom “(void)” asaparameter listisprovided for
convenience.

37 TheOpenGLsShadingLanguage

STATEMENTS AND STRUCTURE

6.1.1

Function names can be overloaded. This allowsthe same function name to be used for multiple functions,
as long as the argument list types differ. If functions' names and argument types match, then their return
type and parameter qualifiers must also match. Overloading is used heavily in the built-in functions.
When overloaded functions (or indeed any functions) are resolved, an exact match for the function's
signature is sought. Thisincludes exact match of array size aswell. No promotion or demotion of the
return type or input argument typesis done. All expected combination of inputs and outputs must be
defined as separate functions.

For example, the built-in dot product function has the following prototypes:

float dot (float x, float y);
float dot (vec2 x, vec2 y);
float dot (vec3 x, vec3 y);
float dot (vecd x, vecd y);

User-defined functions can have multiple declarations, but only one definition. A shader can redefine
built-in functions. If abuilt-infunction isredeclared in ashader (i.e. aprototypeisvisible) beforeacal to
it, then the linker will only attempt to resolve that call within the set shaders that are linked with it.

The function main is used as the entry point to a shader. A shader need not contain afunction named
main, but one shader in a set of shaders linked together to form a single program must. Thisfunction
takes no arguments, returns no value, and must be declared as type void:

voi d main()

{
}

The function main can contain uses of return. See Section 6.4 “Jumps” for more details.

Function Calling Conventions

Functions are called by value-return. This meansinput arguments are copied into the function at call
time, and output arguments are copied back to the caller before function exit. Because the function works
with local copies of parameters, there are no issues regarding aliasing of variables within afunction. At
cal time, input arguments are evauated in order, from left to right. However, the order in which output
parameters are copied back to the caller isundefined. To control what parameters are copied in and/or out
through a function definition or declaration:

» Thekeywordinisused asaqualifier to denote a parameter isto be copied in, but not copied
out.

» Thekeyword out is used asaqualifier to denote a parameter is to be copied out, but not
copied in. Thisshould be used whenever possible to avoid unnecessarily copying
parametersin.

» Thekeyword inout is used as a qualifier to denote the parameter is to be both copied in and
copied out.

» A function parameter declared with no such qualifier means the same thing as specifying in.

The OpenGL Shading Language 38

6.2

STATEMENTS AND STRUCTURE

In afunction, writing to an input-only parameter isallowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling afunction, expressions that do not evaluate to |-values cannot be passed to parameters
declared as out or inout.

No gualifier isalowed on the return type of afunction.

function-prototype :

type function-name(const-qualifier parameter-qualifier type name array-specifier, ...)
type:

any basic type, structure name, or structure definition
const-qualifier :

empty

const
parameter-qualifier :

empty

in

out

inout
name :

empty

identifier
array-specifier :

empty

[integral-constant-expression]

However, the const qualifier cannot be used with out or inout. The aboveis used for function
declarations (i.e. prototypes) and for function definitions. Hence, function definitions can have unnamed
arguments.

Behavior is undefined if recursion is used. Recursion means having any function appearing more than
once at any onetime in the run-time stack of function calls. That is, afunction may not call itself either
directly or indirectly. Compilers may give diagnostic messages when this is detectable at compile time,
but not al such cases can be detected at compile time.

Selection

Conditional control flow in the shading language is done by either if, or if-else:

if (bool -expression)
true-statenent

or

if (bool -expression)
true-statenent
el se

39 TheOpenGLsShadingLanguage

STATEMENTS AND STRUCTURE

6.3

f al se- st at enent

If the expression evaluates to true, then true-statement is executed. If it evaluatesto false and thereisan
else part then fal se-statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

[teration

For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; |oop-expression)
sub- st at enent

whil e (condition-expression)
sub- st at enent

do
st at enent
whil e (condition-expression)

See Section 9 “Shading Language Grammar” for the definitive specification of loops.

Thefor loop first eval uates the init-expression, then the condition-expression. |If the condition-expression
evaluates to true, then the body of the loop is executed. After the body is executed, afor loop will then
evaluate the loop-expression, and then loop back to eval uate the condition-expression, repeating until the
condition-expression evaluatesto false. The loop isthen exited, skipping its body and skipping its loop-
expression. Variables modified by the loop-expression maintain their value after the loop is exited,
provided they are still in scope. Variables declared in init-expression or condition-expression are only in
scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. Thisisthen
repeated, until the condition-expression evaluates to fal se, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

The do-while loop first executes the body, then executes the condition-expression. Thisis repeated until
condition-expression evaluates to fal se, and then the loop is exited.

Expressions for condition-expression must eva uate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize avariable, except in the
do-while loop, which cannot declare avariable in its condition-expression. The variabl€'s scope lasts
only until the end of the sub-statement that forms the body of the loop.

L oops can be nested.

The OpenGL Shading Language 40

6.4

STATEMENTS AND STRUCTURE

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

Jumps
These are the jumps:

jump_statement:
continue;
break;
return;
return expression;
discard; //inthe fragment shader language only

Thereisno “goto” nor other non-structured flow of control.

The continue jump is used only in loops. It skipsthe remainder of the body of the inner most loop of
whichitisinside. For while and do-whileloops, thisjump isto the next evaluation of the loop condition-
expression from which the loop continues as previously defined. For for loops, the jump is to the loop-
expression, followed by the condition-expression.

The break jump can aso be used only in loops. It issimply an immediate exit of the inner-most loop
containing the break. No further execution of condition-expression or |oop-expression is done.

Thediscard keyword isonly allowed within fragment shaders. It can be used within afragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to any bufferswill occur. It would typically be used within aconditional statement, for example:

if (intensity < 0.0)
di scard;

A fragment shader may test a fragment’s a pha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alphavalue.

Thereturn jump causes immediate exit of the current function. If it has expression then that isthe return
value for the function.

The function main can use return. Thissimply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in afragment shader. Using returnin
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.

41 TheOpenGLsShadingLanguage

BUILT-IN VARIABLES

[BUILT-IN VARIABLES

7.1

Vertex Shader Special Variables

Some OpenGL operations still continue to occur in fixed functionality in between the vertex processor
and the fragment processor. Other OpenGL operations continue to occur in fixed functionality after the
fragment processor. Shaders communicate with the fixed functionality of OpenGL through the use of
built-in variables.

The variable gl_Position is available only in the vertex language and isintended for writing the
homogeneous vertex position. All executions of awell-formed vertex shader must write a value into this
variable. It can be written at any time during shader execution. It may aso be read back by the shader
after being written. This value will be used by primitive assembly, clipping, culling, and other fixed
functionality operations that operate on primitives after vertex processing has occurred. Compilers may
generate a diagnostic message if they detect gl_Position is not written, or read before being written, but
not all such cases are detectable. Results are undefined if avertex shader is executed and does not write
gl_Position.

The variable gl_PointSzeisavailable only in the vertex language and is intended for a vertex shader to
write the size of the point to be rasterized. It is measured in pixels.

Thevariablegl_ClipVertexisavailable only in the vertex language and provides aplace for vertex shaders
to write the coordinate to be used with the user clipping planes. The user must ensure the clip vertex and
user clipping planes are defined in the same coordinate space. User clip planes work properly only under
linear transform. It is undefined what happens under non-linear transform.

These built-in vertex shader variables for communicating with fixed functionality are intrinsically
declared with the following types:

vecd gl _Position; // must be written to
float gl _PointSize; /1l may be witten to
vecd gl _CipVertex; // may be witten to

If gl_PointSze or gl_Clip\ertex are not written to, their values are undefined. Any of these variables can
be read back by the shader after writing to them, to retrieve what was written. Reading them before
writing them results in undefined behavior. If they are written more than once, it is the last value written
that is consumed by the subsequent operations.

These built-in variables have global scope.

The OpenGL Shading Language 42

7.2

BUILT-IN VARIABLES

Fragment Shader Special Variables

The output of the fragment shader is processed by the fixed function operations at the back end of the
OpenGL pipeline. Fragment shaders output values to the OpenGL pipeline using the built-in variables
gl_FragColor, gl_FragData, and gl_FragDepth, unlessthe discard keyword is executed.

These variables may be written more than once within afragment shader. If so, thelast value assigned is
the one used in the subsequent fixed function pipeline. The values written to these variables may be read
back after writing them. Reading from these variables before writing them resultsin an undefined value.
The fixed functionality computed depth for afragment may be obtained by reading gl_FragCoord.z,
described below.

Writing to gl_FragColor specifies the fragment color that will be used by the subsequent fixed
functionality pipeline. If subseguent fixed functionality consumes fragment color and an execution of a
fragment shader does not write avalue to gl_FragColor then the fragment color consumed is undefined.

If the frame buffer is configured asa color index buffer then behavior is undefined when using a fragment
shader.

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and a shader does not write gl_FragDepth, then the fixed function value for depth
will be used asthe fragment’s depth value. If ashader statically assignsavalue to gl_FragDepth, and
there is an execution path through the shader that does not set gl_FragDepth, then the value of the
fragment’s depth may be undefined for executions of the shader that take that path. That is, if a shader
statically contains awrite to gl_FragDepth, then it is responsible for alwayswriting it.

(A shader contains a static assignment to a variable x if, after pre-processing, the shader contains a
statement that would write to x, whether or not run-time flow of control will cause that statement to be
executed.)

Thevariable gl_FragDataisan array. Writing to gl_FragData[n] specifies the fragment data that will be
used by the subsequent fixed functionality pipelinefor datan. If subseguent fixed functionality consumes
fragment data and an execution of a fragment shader does not write avalueto it, then the fragment data
consumed is undefined.

If ashader statically assigns avaueto gl_FragColor, it may not assign a value to any element of
gl_FragData. If ashader statically writes avalue to any element of gl_FragData, it may not assign a
valuetogl_FragColor. That is, ashader may assign valuesto either gl_FragColor or gl_FragData, but
not both.

If ashader executesthe discard keyword, the fragment is discarded, and the values of gl_FragDepth,
g_FragColor, and gl_FragData become irrelevant.

Thevariablegl_FragCoord is available as a read-only variable from within fragment shaders and it holds
the window relative coordinates x, y, z, and 1/w values for the fragment. This value is the result of the
fixed functionality that interpolates primitives after vertex processing to generate fragments. The z
component is the depth value that would be used for the fragment’'s depth if a shader contained no writes
togl_FragDepth. Thisisuseful for invarianceif a shader conditionally computes gl_FragDepth but
otherwise wants the fixed functionality fragment depth.

43 TheOpenGLsShadingLanguage

BUILT-IN VARIABLES

The fragment shader has access to the read-only built-in variable gl_FrontFacing whose value istr ue if

the fragment belongsto a front-facing primitive. One use of thisis to emulate two-sided lighting by
selecting one of two colors calculated by the vertex shader.

The built-in variables that are accessible from a fragment shader areintrinsicaly given types as follows:

vec4
bool

vec4
vec4
fl oat

However, they do not behave like variables with no qualifier; their behavior is as described above. These

gl _FragCoord;

gl _Front Faci ng;

gl _FragCol or;

gl _FragDat a[gl _MaxDr awBuf f er s] ;
gl _FragDept h;

built-in variables have global scope.

7.3 Vertex Shader Built-In Attributes

The following attribute names are built into the OpenGL vertex language and can be used from within a

vertex shader to access the current values of attributes declared by OpenGL. All page numbers and
notations are references to the OpenGL 1.4 specification.

11

/1l Vertex

11

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

Attr

vec4d
vec4d
vec3
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d

i butes, p. 19.
gl _Col or;
gl _SecondaryCol or;
gl _Normal ;
gl _Vertex;

gl _Mul ti TexCoor dO
gl _Multi TexCoordl;
gl _Multi TexCoord2
gl _Multi TexCoord3
gl _Multi TexCoor d4
gl _Multi TexCoord5
gl _Multi TexCoor d6
gl _Multi TexCoord7

float gl _FogCoord;

7.4 Built-In Constants

The following built-in constants are provided to vertex and fragment shaders.

11

/1 1 nplenentati on dependent constants. The
/1 are the mininumvalues allowed for these

/1

const
const
const
const
const

int
int
int
int
int

gl _
gl _
gl _
gl _
gl _

The OpenGL Shading Language

MaxLi ghts = 8;
Maxd i pPl anes = 6;

MaxText ureUnit s 2;

MaxText ur eCoords = 2;

MaxVert exAttri bs = 16;
44

exanpl e val ues bel ow
maxi muns.

// G 1.0

// G 1.0

// G 1.3

/1 ARB_fragnment _program
/1 ARB_vertex_shader

BUILT-IN VARIABLES

const int gl _MaxVertexUniformConponents = 512; // ARB_vertex_shader

const int gl _MuxVaryingFloats = 32; /'l ARB_vertex_shader

const int gl _MaxVertexTexturel mageUnits = O; /'l ARB_vertex_shader

const int gl _MaxConbi nedTexturel mageUnits = 2; // ARB_vertex_shader

const int gl _MaxTexturel mageUnits = 2; /1 ARB_fragnment _shader

const int gl _MaxFragnent Uni f or nConponents = 64;// ARB_fragment _shader

const int gl_MaxDrawBuffers = 1; /'l proposed ARB_draw buffers

7.5 Built-In Uniform State

Asan aid to accessing OpenGL processing state, the following uniform variables are built into the
OpenGL Shading Language. All page humbers and notations are references to the 1.4 specification.

11

/1 Matrix state. p. 31, 32, 37, 39, 40.

/1

uni f orm mat 4
uni f orm nmat 4
uni f orm nmat 4
uni f orm nat 4

11

gl _Mbdel Vi ewMatri x;

gl _ProjectionMatri x;

gl _Mbdel Vi ewPr oj ecti onMatri Xx;

gl _TextureMatrix[gl _MaxText ur eCoords] ;

/] Derived matrix state that provides inverse and transposed versions
/] of the matrices above. Poorly conditioned matrices may result
/1 in unpredictable values in their inverse forns.

/1
uni f orm nmat 3

uni f orm nmat 4
uni f orm nmat 4
uni f orm nmat 4
uni f orm nmat 4

uni f orm nmat 4
uni f orm nmat 4
uni f orm nmat 4
uni f orm mat 4

uni f orm nmat 4
uni f orm nmat 4
uni f orm mat 4
uni f orm mat 4

/1

gl _Normal Matrix; // transpose of the inverse of the
/'l upper leftnost 3x3 of gl _Model Vi ewMatri x

gl _Model Vi ewMat ri xl nver se;

gl _ProjectionMatrixl nverse;

gl _Mbdel Vi ewPr oj ecti onMatri xl nver se;

gl _TextureMatrixlnverse[gl _MaxText ureCoords];

gl _Mbdel Vi ewivat ri xTr anspose;

gl _ProjectionMatri xTranspose;

gl _Mbdel Vi ewPr oj ecti onMatri xTranspose;

gl _TextureMatrixTranspose[gl _MaxText ureCoords] ;

gl _Mbdel Vi ewMat ri xI nver seTranspose;

gl _ProjectionMatri x|l nverseTranspose;

gl _Mbdel Vi ewPr oj ecti onMatri xl nver seTr anspose;

gl _TextureMatrixlnverseTranspose[gl _MaxText ureCoor ds] ;

/1 Normal scaling p. 39.

/1

uni form float gl _Nornal Scal e;

11

45 TheOpenGLsShadingLanguage

BUILT-IN VARIABLES

/1 Depth range in wi ndow coordinates, p. 33

I
struct gl _Dept hRangeParaneters {
fl oat near; /1 n
float far; Il f
float diff; /I f - n
b
uni f or m gl _Dept hRangePar anet ers gl _Dept hRange;
/1
/1 Clip planes p. 42.
I
uni formvec4 gl_dipPlane[gl _MaxCl i pPl anes];
/1
// Point Size, p. 66, 67.
/1

struct gl _Poi nt Paraneters {
float size;
float sizeMn;
float sizeMax;
fl oat fadeThreshol dSi ze;
fl oat distanceConstant Attenuation;
fl oat distanceLi nearAttenuation;
fl oat distanceQuadraticAttenuati on;

}s

uni f orm gl _Poi nt Par anet ers gl _Point;

/1

/! Material State p. 50, 55.

/1

struct gl _Material Paraneters {
vecd4 eni ssion; /1 Ecm
vecd4 anbient; /1 Acm
vecd4 diffuse; /1 Dcm
vecd specul ar; /1 Scm
fl oat shi ni ness; I/ Srm

}s

uni form gl _Material Paranmeters gl _FrontMateri al ;
uni form gl _Material Paranmeters gl _BackMaterial;

/1
/1 Light State p 50, 53, 55.
/1
struct gl _Light SourceParaneters {
vecd anbient; /1 Acli
vecd diffuse; /1 Dcli
vecd4 specul ar; /1 Scli
vecd position; /1 Ppli
vec4 hal f Vector; /] Derived: Hi

The OpenGL Shading Language 46

vec3
fl oat
fl oat

fl oat

fl oat
fl oat
fl oat

}s

spot Di recti on; /1
spot Exponent ; /1
spot Cut of f; /1

I
spot CosCut of f ; /1

I
const ant Att enuation; //
l i near Att enuati on; /1

quadrati cAttenuation;//

uni f orm gl _Li ght Sour cePar anet er s

struct gl _

vecd

}s

Li ght Model Par aneters {
anbi ent ; /1 Acs

uni f orm gl _Li ght Model Par anet er s

/] Derived state from products of

/1

/1

struct gl _
vecd

b

Li ght Model Products {
sceneCol or;

BUILT-IN VARIABLES

Sdl i
Srli
Crli
(range:
Deri ved:
(range:
KO

K1

K2

[0.0,90.0],
cos(Crli)
[1.0,0.0],-1.0)

180. 0)

gl _Li ght Sour ce[gl _MaxLi ghts];

gl _Li ght Model ;

l'ight and material.

/!l Derived. Ecm+ Acm?* Acs

uni f orm gl _Li ght Model Products gl _Front Li ght Model Product ;
uni f orm gl _Li ght Model Products gl _BackLi ght Model Product ;

struct gl _
vec4d
vec4d
vec4d
b

Li ght Products {

anbi ent ; /1 Acm* Acli
di f fuse; /1 Dcm* Dcli
specul ar; /1 Scm* Scli

uni form gl _Li ght Products gl _FrontLight Product [gl _MaxLi ghts];
uni form gl _Li ght Product s gl _BackLi ght Product [gl _MaxLi ghts];

11

/1 Texture Environment and Generation, p.

/1

uni form
uni form
uni form
uni form
uni form
uni form
uni form
uni form
uni form

vec4
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d
vec4d

47

152, p. 40-42.

gl _Text ur eEnvCol or [gl _MaxText ur el mageUnits];
gl _EyePl aneS[gl _MaxText ur eCoor ds] ;

gl _EyePl aneT[gl _MaxText ur eCoor ds] ;

gl _EyePl aneR[gl _MaxText ur eCoor ds] ;

gl _EyePl ane gl _MaxText ur eCoor ds] ;

gl _nj ect Pl aneS[gl _MaxText ur eCoor ds] ;

gl _nj ect Pl aneT[gl _MaxText ur eCoor ds] ;

gl _nj ect Pl aneR[gl _MaxText ur eCoor ds] ;

gl _nj ect Pl ane gl _MaxText ur eCoor ds] ;

TheOpenGLsShadingLanguage

BUILT-IN VARIABLES

7.6

/1
/1 Fog p. 161
/1
struct gl _FogParaneters {
vec4 col or;
fl oat density;
float start;
fl oat end;
float scal e; /] Derived: 1.0/ (end - start)
}s

uni f orm gl _FogPar anet ers gl _Fog;

Varying Variables

Unlike user-defined varying variables, the built-in varying variables don't have a strict one-to-one
correspondence between the vertex language and the fragment language. Two sets are provided, one for
each language. Their relationship is described below.

The following built-in varying variables are available to write to in a vertex shader. A particular one
should be written to if any functionality in a corresponding fragment shader or fixed pipeline usesit or
state derived from it. Otherwise, behavior is undefined.

varying vec4 gl _FrontCol or;

varying vec4 gl _BackCol or;

varying vec4 gl _Front SecondaryCol or;

varying vec4 gl _BackSecondaryCol or;

varying vecd4 gl_TexCoord[]; // at nmost will be gl _MaxTextureCoords
varying float gl _FogFragCoord;

For gl_FogFragCoord, the value written will be used asthe “c” value on page 160 of the OpenGL 1.4
Specification by the fixed functionality pipeline. For example, if the z-coordinate of the fragment in eye
spaceisdesired as“c”, then that's what the vertex shader should write into gl_FogFragCoord.

Aswith al arrays, indices used to subscript gl_TexCoord must either be an integral constant expressions,
or thisarray must be re-declared by the shader with asize. The size can be at most gl_MaxTextureCoords.
Using indexes close to 0 may aid the implementation in preserving varying resources.

The following varying variables are available to read from in afragment shader. Thegl_Color and
gl_SecondaryColor names are the same names as attributes passed to the vertex shader. However, thereis
no name conflict, because attributes are visible only in vertex shaders and the following are only visiblein
afragment shader.

varying vec4 gl_Color;

varying vec4 gl _SecondaryCol or;

varying vecd4 gl_TexCoord[]; // at nmost will be gl _MaxTextureCoords
varying float gl_FogFragCoord;

The valuesin gl_Color and gl_SecondaryColor will be derived automatically by the system from
gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor based on which
faceisvisible. If fixed functionality isused for vertex processing, then gl_FogFragCoord will either be

The OpenGL Shading Language 48

BUILT-IN VARIABLES

the z-coordinate of the fragment in eye space, or the interpolation of the fog coordinate, as described in
section 3.10 of the OpenGL 1.4 Specification. The gl_TexCoord[] values are the interpolated

gl_TexCoord[] valuesfrom avertex shader or the texture coordinates of any fixed pipeline based vertex
functionality.

Indices to the fragment shader gl_TexCoord array are as described above in the vertex shader text.

49 TheOpenGLsShadingLanguage

BUILT-IN FUNCTIONS

8 BUILT-IN FUNCTIONS

The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
areintended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

» They expose some necessary hardware functionality in a convenient way such as accessing
atexture map. Thereisno way in the language for these functions to be emulated by a
shader.

» They represent atrivial operation (clamp, mix, etc.) that is very simple for the user to write,
but they are very common and may have direct hardware support. Itisavery hard problem
for the compiler to map expressions to complex assembler instructions.

» They represent an operation graphics hardware is likely to accelerate at some point. The
trigonometry functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent
computationsin their own shader code since the built-in functions are assumed to be optima (e.g.,
perhaps supported directly in hardware).

User code can replace built-in functions with their own if they choose, by simply re-declaring and
defining the same name and argument list.

When the built-in functions are specified bel ow, where the input arguments (and corresponding output)
can befloat, vec2, vec3, or vecd, genType is used as the argument. For any specific use of afunction, the
actud type hasto bethe samefor all argumentsand for the returntype. Similarly for mat, which can be a
mat2, mat3, or mat4.

The OpenGL Shading Language 50

8.1

BUILT-IN FUNCTIONS

Angle and Trigonometry Functions

Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functionsresult in a divide by zero error. If thedivisor of aratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genType radians (genType degrees) Converts degrees to radians and returns the
result, i.e., result = 77180 [degrees.

genType degr ees (genType radians) Converts radians to degrees and returns the
result, i.e., result = 180/t [tadians.

genType sin (genType angle) The standard trigonometric sine function.
genType cos (genType angle) The standard trigonometric cosine function.
genType tan (genType angle) The standard trigonometric tangent.

genType asin (genType x) Arc sine. Returns an angle whose sineisx. The

range of values returned by this functionis
[-1/2, /2. Resultsare undefined if |x| > 1.

genType acos (genType X) Arc cosine. Returns an angle whose cosineis x.
The range of values returned by thisfunctionis
[0,). Results are undefined if [x| > 1.

genType atan (genTypey, genType X) Arc tangent. Returns an angle whose tangent is
y/x. The signs of x and y are used to determine
what quadrant the angleisin. The range of
values returned by this function is [T, 1.
Results are undefined if x and y are both 0.

genType atan (genTypey_over_x) Arc tangent. Returns an angle whose tangent is
y_over_X. Therange of values returned by this
functionis[-1t/2, /2.

51 TheOpenGLsShadingLanguage

BUILT-IN FUNCTIONS

8.2 Exponential Functions

These all operate component-wise. The description is per component.

Syntax Description
genType pow (genType X, genTypey) Returns x raised to the y power, i.e., ¥.
Results are undefined if x < 0.
Results are undefined if x= 0andy <= 0.

genType exp (genType x) Returns the natural exponentiation of x, i.e., €.

genType log (genType X) Returns the natura logarithm of x, i.e., returns
the value y which satisfies the equation x = €.

Results are undefined if x <= 0.
genType exp2 (genType X) Returns 2 raised to the x power, i.e., 2%

genType log2 (genType X) Returns the base 2 logarithm of x, i.e., returns the
value y which satisfies the equation x = 2V.

Results are undefined if x <= 0.

genType sgrt (genType X) Returns the positive square root of x.
Results are undefined if x < 0.

genType inversesqrt (genType X) Returns the reciprocal of the positive sguare root
of x.

Results are undefined if x <= 0.

8.3 Common Functions

These all operate component-wise. The description is per component.

Syntax Description
genType abs (genType X) Returns x if x >= 0, otherwise it returns —x
genType sign (genType X) Returns1.0if x>0, 0.0if x=0, or -1.0if x< 0
genType floor (genTypeXx) Returns avalue equal to the nearest integer that is

less than or equal to x

The OpenGL Shading Language 52

genType ceil (genTypeX)

genType fract (genTypeXx)
genType mod (genType x, float y)
genType mod (genType x, genTypey)

genType min (genTypeXx, genTypey)
genType min (genTypeX, float y)

genType max (genType X, genTypey)
genType max (genType x, float y)

genType clamp (genType X,
genType minval,
genType max\al)

genType clamp (genType X,
float minVval,
float maxVal)

genType mix (genType X,
genTypey,
genType a)

genType mix (genType X,
genTypey,
float a)

genType step (genType edge, genType X)

genType step (float edge, genType X)

genType smoothstep (genType edge0,
genType edgel,
genType X)

genType smoothstep (float edge0,
float edgel,
genType X)

BUILT-IN FUNCTIONS

Returns avalue equal to the nearest integer that is
greater than or equal to x

Returns x —floor (x)
Modulus. Returnsx—y Lfloor (x/y)
Modulus. Returnsx—y Lfloor (x/y)

Returnsy if y < x, otherwise it returns x

Returnsy if x <y, otherwise it returnsx

Returns min (max (x, minval), maxval)

Note that colors and depths written by fragment
shaders will be clamped by the implementation
after the fragment shader runs.

Returnsx [1(1 —a) +y [a, i.e,, the linear blend
of xand y

Returns 0.0 if x < edge, otherwise it returns 1.0

Returns 0.0 if x <= edge0 and 1.0 if x >= edgel
and performs smooth Hermite interpol ation
between 0 and 1 when edge0 < x < edgel. Thisis
useful in caseswhere you would want athreshold
function with a smooth transition. Thisis
equivaent to:

genTypet;
t = clamp ((x — edge0) / (edgel — edge0), O, 1);
returnt* t* (3—-2* t);

53 TheOpenGLsShadingLanguage

BUILT-IN FUNCTIONS

8.4 Geometric Functions

These operate on vectors as vectors, not component-wise.

Syntax

float length (genType X)

float distance (genType pO, genType pl)

float dot (genType x, genTypey)

vec3 cross (vec3 x, vec3y)

genType normalize (genType X)

vecs ftransform()

genType faceforward (genType N,

The OpenGL Shading Language

genTypel,
genType Nref)

Description
Returns the length of vector x, i.e.,
sqrt (x[0] LIx[0] + x[1] LIx[1] + ...)

Returns the distance between pOand p1, i.e.
length (p0 —pl)

Returns the dot product of x andy, i.e.,
result = x[0] Cly[0] + x[1] Cy[1] + ...

Returns the cross product of x and y, i.e.
result.0 = x[1] Uy[2] - y[1] UIx[2]
result.1 = x[2] Uy[0] - y[2] LIx[0]
result.2 = x[0] Ly[1] - y[0] [Ix[1]

Returns a vector in the same direction as x but
with alength of 1.

For vertex shaders only. Thisfunction will
ensure that the incoming vertex value will be
transformed in away that produces exactly the
same result as would be produced by OpenGL's
fixed functionality transform. It isintended to be
used to compute gl_Position, e.g.,

gl_Position = ftransform()

This function should be used, for example, when
an application isrendering the same geometry in
separate passes, and one pass uses the fixed
functionality path to render and another pass uses
programmable shaders.

If dot (Nref, 1) < 0 return N otherwise return —N

54

BUILT-IN FUNCTIONS

genType reflect (genTypel, genType N) |For the incident vector | and surface orientation
N, returns the reflection direction:

result =1 —2 Lldot(N, 1) LIN

N must already be normalized in order to achieve
the desired result.

genType refract(genType |, genType N, For the incident vector | and surface normal N,
float eta) and the ratio of indices of refraction eta, return
the refraction vector. The returned result is
computed by

k=1.0-eta* eta* (1.0-dot(N, I) * dot(N, 1))
if (k<0.0)

result = genType(0.0)
else

result =eta* | - (eta* dot(N, I) +sgrt(k)) * N

Theinput parametersfor theincident vector | and
the surface normal N must already be normalized
to get the desired results.

Matrix Functions

Syntax Description

mat matrixCompMult (mat X, mat y) Multiply matrix x by matrix y component-wise,
i.e., result[i][j] isthe scalar product of x[i][j] and

ylijll-

Note: to get linear algebraic matrix
multiplication, use the multiply operator (*).

Vector Relational Functions

Relational and equality operators (<, <=, >, >=, ==, I=) are defined (or reserved) to produce scalar
Boolean results. For vector results, use the following built-in functions. Below, “bvec” is a placeholder
for one of bvec2, bvec3, or bvec4, “ivec” isa placeholder for one of ivec2, ivec3, or ivec4, and “vec” isa
placeholder for vec2, vec3, or vecd. Inall cases, the sizes of theinput and return vectorsfor any particular
call must match.

Syntax Description
bvec lessT han(vec X, vecy) Returns the component-wise compare of x <.
bvec lessThan(ivec x, ivec y)

55 TheOpenGLsShadingLanguage

BUILT-IN FUNCTIONS

8.7

bvec lessThanEqual (vec X, vecy) Returns the component-wise compare of x <=.
bvec lessT hanEqual (ivec x, ivecy)

bvec greater Than(vec x, vecy) Returns the component-wise compare of x > y.
bvec greater Than(ivec x, ivecy)

bvec greater ThanEqual(vec X, vecy) Returns the component-wise compare of x >=y.
bvec greater ThanEqual(ivec x, ivecy)

bvec equal(vec x, vec y) Returns the component-wise compare of x ==.
bvec equal(ivec x, ivecy)
bvec equal (bvec x, bvecy)

bvec notEqual (vec x, vec y) Returns the component-wise compare of x !=y.
bvec notEqual (ivec x, ivecy)
bvec notEqual (bvec x, bvec y)

bool any(bvec x) Returns true if any component of x istrue.

bool all(bvec x) Returnstrue only if al components of x are true.

bvec not(bvec x) Returns the component-wise logical complement
of x.

Texture Lookup Functions

Texture lookup functions are available to both vertex and fragment shaders. However, level of detail is
not computed by fixed functionality for vertex shaders, so there are some differencesin operation between
vertex and fragment texture lookups. The functionsin the table below provide access to textures through
samplers, as set up through the OpenGL API. Texture properties such as size, pixel format, number of
dimensions, filtering method, number of mip-map levels, depth comparison, and so on are also defined by
OpenGL API calls. Such properties are taken into account as the texture is accessed via the built-in
functions defined bel ow.

If anon-shadow texture call is made to a sampler that represents a depth texture with depth comparisons
turned on, then results are undefined. If a shadow texture call is made to a sampler that represents a depth
texture with depth comparisons turned off, then results are undefined. If a shadow texture call is made to
asampler that does not represent a depth texture, then results are undefined.

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in avertex shader. For afragment shader, if biasis present, it is added to the calculated level of
detail prior to performing the texture access operation. If the bias parameter is not provided, then the
implementation automatically selects level of detail: For atexturethat is not mip-mapped, the texture is

The OpenGL Shading Language 56

BUILT-IN FUNCTIONS

used directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the
implementation is used to do the texture lookup. If it is mip-mapped and running on the vertex shader,

then the base texture is used.

The built-ins suffixed with “L od” are alowed only in avertex shader. For the“Lod” functions, lod is

directly used asthe level of detail.

Syntax
vecs texturelD (samplerlD sampler,
float coord [, float biag])
vecd texturelDProj (samplerlD sampler,
vec2 coord [, float bias])
vecs texturelDProj (samplerlD sampler,
vec4 coord [, float bias])
vecd texturelDL od (samplerlD sampler,
float coord, float lod)
vecd texturelDProjL od (samplerlD sampler,
vec2 coord, float lod)
vecd texturelDProjL od (samplerlD sampler,
vec4 coord, float lod)

vecs texture2D (sampler2D sampler,
vec2 coord [, float biag])
vecd texture2DProj (sampler2D sampler,
vec3 coord [, float bias])
vecd texture2DProj (sampler2D sampler,
vec4 coord [, float bias])
vecd texture2DL od (sampler2D sampler,
vec2 coord, float lod)
vecd texture2DProjL od (sampler2D sampler,
vec3 coord, float lod)
vecd texture2DProjL od (sampler2D sampler,
vec4 coord, float lod)

vecs texture3D (sampler3D sampler,
vec3 coord [, float biag])
vecs texture3DProj (sampler3D sampler,
vec4 coord [, float bias])
vecd texture3DL od (sampler3D sampler,
vec3 coord, float lod)
vecd texture3DProjL od (sampler3D sampler,
vec4 coord, float lod)

57

Description

Use the texture coordinate coord to do a
texture lookup in the 1D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate
coord.sisdivided by the last component of
coord.

Use the texture coordinate coord to do a
texture lookup in the 2D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate
(coord.s, coord.t) isdivided by the last
component of coord. The third component
of coord isignored for the vec4 coord
variant.

Use the texture coordinate coord to do a
texture lookup in the 3D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate is
divided by coord.qg.

TheOpenGLsShadingLanguage

BUILT-IN FUNCTIONS

8.8

vecs textureCube (samplerCube sampler, Use the texture coordinate coord to do a
vec3 coord [, float biag]) texture lookup in the cube map texture

currently bound to sampler. The direction
vec4 textureCubel od (samplerCube sampler, of coord is used to select which face to do a

vec3 coord, float lod) 2-dimensiona texture lookup in, as
described in section 3.8.6 in version 1.4 of
the OpenGL specification.

vecd shadow1D (samplerlDShadow sampler, Use texture coordinate coord to do a depth
vec3 coord [, float biag])~ ¢omparison lookup on the depth texture

bound to sampler, as described in section
veca shadow?2D (sampler2DShadow sampler, 3.8.14 of verspon 1.4 of the OpenGL

vec3 coord [, float bias]) |specification. The 3rd component of coord

vec4 shadow1DProj (samplerlDShadow sampler, (coord.p) isused asthe R value. Thetexture
veca coord [, float biag]) bound to sampler must be a depth texture,

. or results are undefined. For the projective
vecd shadow2DProj (sampler2DShadow sampler, (“Proj”) version of each built-in, thetexture

vec4 coord [, float biag]) coordinate is divide by coord.q, giving a
vec4 shadow1DL od (samplerlDShadow sampler, depth valueR of coord.p/coord.q. The
second component of coord isignored for
vec3 coord, floatlod) the“1D” variants.
vecd shadow2DL od (sampler2DShadow sampler,
vec3 coord, float lod)
vecd shadow1DPr oj L od(sampler1DShadow sampler,
vecd coord, float lod)
vecd shadow2DPr oj L od(sampler2D Shadow sampler,

vec4 coord, float lod)

Fragment Processing Functions

Fragment processing functions are only available in shaders intended for use on the fragment processor.

Derivatives may be computationally expensive and/or numerically unstable. Therefore, an OpenGL
implementation may approximate the true derivatives by using afast but not entirely accurate derivative
computation.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

F(x+dx) - F(x) ~ dFdx(x) * dx la

dFdx(x) ~ (F(x+dx) - F(x)) / dx 1b
Backward differencing:

F(x-dx) - F(x) ~ -dFdx(x) * dx 2a

drFdx(x) ~ (F(x) - F(x-dx)) / dx 2b

The OpenGL Shading Language 58

BUILT-IN FUNCTIONS

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

A GL implementation may use the above or other methods to perform the cal culation, subject to the
following conditions:

1)

2)

3)

The method may use piecewise linear approximations. Such linear approximationsimply that higher
order derivatives, dFdx(dFdx(x)) and above, are undefined.

The method may assume that the function evaluated is continuous. Therefore derivatives within the
body of a non-uniform conditional are undefined.

The method may differ per fragment, subject to the constraint that the method may vary by window
coordinates, not screen coordinates. The invariance requirement described in section 3.1 of the
OpenGL 1.4 specification isrelaxed for derivative cal culations, because the method may be a
function of fragment location.

Other properties that are desirable, but not required, are:

4)
5)

Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(y))
and dFdy(dFdx(x)) are undefined.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 5.6 of the OpenGL 1.4 specification), allowing a user to make an image quality versus speed
tradeoff.

59 TheOpenGLsShadingLanguage

BUILT-IN FUNCTIONS

Syntax Description

genType dFdx (genType p) Returns the derivative in x using local
differencing for the input argument p.

genType dFdy (genType p) Returns the derivative iny using local
differencing for the input argument p.

These two functions are commonly used to estimate
the filter width used to anti-alias procedural
textures.We are assuming that the expression is being
evaluated in parallel on a SIMD array so that at any
given point in time the value of the function is known
at the grid points represented by the SIMD array.
Local differencing between SIMD array € ements can
therefore be used to derive dFdx, dFdy, etc.

genType fwidth (genType p) Returns the sum of the absolute derivative in x
and y using local differencing for the input
argument p, i.e.

return = abs (dFdx (p)) + abs (dFdy (p));

8.9 Noise Functions

Noise functions are available to both fragment and vertex shaders. They are stochastic functions that can
be used to increase visual complexity. Values returned by the following noise functions give the
appearance of randomness, but are not truly random. The noise functions below are defined to have the
following characteristics:

» Thereturn vaue(s) are adwaysin the range [-1.0,1.0], and cover at least the range [-0.6,
0.6], with a gaussian-like distribution.

» Thereturn value(s) have an overall average of 0.0

* They arerepeatable, in that a particular input value will always produce the same return
vaue

* They are statistically invariant under rotation (i.e., no matter how the domain isrotated, it
has the same statistical character)

* They have a statistical invariance under translation (i.e., no matter how the domainis
translated, it has the same statistical character)

* They typically give different results under translation.

» The spatia frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.

The OpenGL Shading Language 60

BUILT-IN FUNCTIONS

e They are ¢! continuous everywhere (i.e, the first derivative is continuous)

Syntax
float noisel (genType X)

vec2 noise2 (genType X)

vec3 noise3 (genType X)

vecd noised (genType X)

Description

Returns a 1D noise value based on the input
value x.

Returns a 2D noise value based on the input
valuex.

Returns a 3D noise value based on the input
valuex.

Returns a4D noise value based on the input
valuex.

61 TheOpenGLsShadingLanguage

SHADING LANGUAGE GRAMMAR

O SHADING LANGUAGE GRAMMAR

The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

ATTRI BUTE CONST BOCL FLOAT | NT

BREAK CONTI NUE DO ELSE FOR | F DI SCARD RETURN

BVEC2 BVEC3 BVECA | VEC2 | VEC3 | VEC4 VEC2 VEC3 VEC4

MAT2 MAT3 MAT4 I N OUT | NOUT UNI FORM VARYI NG

SAMPLERLID SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2 DSHADOW
STRUCT VA D WHI LE

| DENTI FI ER TYPE_NAME FLOATCONSTANT | NTCONSTANT BOOLCONSTANT

FI ELD_SELECTI ON

LEFT_OP RI GHT_OP

INC_OP DEC_OP LE_OP GE_OP EQ OP NE_OP

AND OP OR OP XOR OP MUL_ASSI GN DI V_ASSI GN ADD_ASSI GN

MOD_ASSI GN LEFT_ASSI GN RI GHT_ASSI GN AND_ASSI GN XOR_ASS| GN OR_ASSI GN
SUB_ASSI GN

LEFT_PAREN RI GHT_PAREN LEFT_BRACKET RI GHT_BRACKET LEFT_BRACE RI GHT_BRACE DOT
COMVA COLON EQUAL SEM CCLON BANG DASH TI LDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RI GHT_ANGLE VERTI CAL_BAR CARET AMPERSAND QUESTI ON

The following describes the grammar for the OpenGL Shading Language in terms of the above tokens.

variable identifier:
IDENTIFIER

primary_expression:
variable identifier
INTCONSTANT
FLOATCONSTANT
BOOLCONSTANT
LEFT_PAREN expression RIGHT_PAREN

postfix_expression:
primary_expression
postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET
function_call

The OpenGL Shading Language 62

SHADING LANGUAGE GRAMMAR

postfix_expression DOT FIELD _SELECTION
postfix_expression INC_OP
postfix_expression DEC_OP

integer_expression:
expression

function_call:
function_call_generic

function_call_generic:
function_call_header_with_parameters RIGHT_PAREN
function_call_header_no_parameters RIGHT PAREN

function_call_header_no_parameters:
function_call_header VOID
function_call_header

function_call_header_with_parameters:
function_call_header assignment_expression
function_call_header_with_parameters COMMA assignment_expression

function_call_header:
function_identifier LEFT_PAREN

function_identifier:
constructor_identifier
IDENTIFIER

/I Grammar Note: Constructors look like functions, but lexical anaylsis recognized most of them as key-
words.

constructor_identifier:
FLOAT
INT
BOOL

63 TheOpenGLsShadingLanguage

SHADING LANGUAGE GRAMMAR

VEC2
VEC3
VEC4
BVEC2
BVEC3
BVEC4
IVEC2
IVEC3
IVEC4
MAT2
MAT3
MAT4
TYPE_NAME

unary_expression:
postfix_expression
INC_OP unary_expression
DEC_OP unary_expression
unary_operator unary_expression

/I Grammar Note: No traditional style type casts.

unary_operator:
PLUS
DAH
BANG
TILDE // reserved

/I Grammar Note: No ™' or ‘&' unary ops. Pointersare not supported.

multiplicative_expression:
unary_expression
multiplicative_expression STAR unary_expression
multiplicative_expression S_LASH unary_expression
multiplicative_expression PERCENT unary_expression // reserved

The OpenGL Shading Language 64

SHADING LANGUAGE GRAMMAR

additive_expression:
multiplicative_expression
additive_expression PLUS multiplicative_expression
additive_expression DASH multiplicative_expression

shift_expression:
additive_expression
shift_expression LEFT_OP additive_expression // reserved
shift_expression RIGHT_OP additive_expression // reserved

relational _expression:
shift_expression
relational_expression LEFT_ANGLE shift_expression
relational_expression RIGHT_ANGLE shift_expression
relational_expression LE_OP shift_expression
relational_expression GE_OP shift_expression

equality_expression:
relational_expression
equality_expression EQ_OP relational_expression
equality_expression NE_OP relational_expression

and_expression:
equality_expression
and_expression AMPERSAND equality_expression // reserved

exclusive_or_expression:
and_expression
exclusive_or_expression CARET and_expression // reserved

inclusive_or_expression:
exclusive_or_expression

inclusive_or_expression VERTICAL_BAR exclusive_or_expression // reserved

logical_and_expression:
inclusive_or_expression

65 TheOpenGLsShadingLanguage

SHADING LANGUAGE GRAMMAR

logical_and_expression AND_OP inclusive or_expression

logical_xor_expression:
logical_and_expression
logical_xor_expression XOR_OP logical_and_expression

logical_or_expression:
logical_xor_expression
logical_or_expression OR_OP logical_xor_expression

conditional _expression:
logical_or_expression
logical_or_expression QUESTION expression COLON conditional _expression

assignment_expression:
conditional_expression
unary_expression assignment_operator assignment_expression

assignment_operator:
EQUAL
MUL_ASSIGN
DIV_ASSIGN
MOD_ASIGN // reserved
ADD_ASSIGN
SUB_ASSIGN
LEFT_ASSIGN // reserved
RIGHT_ASSIGN // reserved
AND_ASSIGN // reserved
XOR_ASSIGN /] reserved
OR _ASSIGN /I reserved

expression:
assignment_expression

expression COMMA assignment_expression

constant_expra;si on:

The OpenGL Shading Language 66

SHADING LANGUAGE GRAMMAR

conditional_expression

declaration:
function_prototype SEMICOLON
init_declarator_list SEMICOLON

function_prototype:
function_declarator RIGHT_PAREN

function_declarator:
function_header
function_header_with_parameters

function_header_with_parameters:
function_header parameter_declaration
function_header_with_parameters COMMA parameter_declaration

function_header:
fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator:
type_specifier IDENTIFIER
type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

parameter_declaration:
type_qualifier parameter_qualifier parameter_declarator
parameter_qualifier parameter_declarator
type_qualifier parameter_qualifier parameter_type_specifier
parameter_qualifier parameter_type specifier

parameter_qualifier:
[* empty */
IN
ouT
INOUT

67 TheOpenGLsShadingLanguage

SHADING LANGUAGE GRAMMAR

parameter_type specifier:
type specifier
type_specifier LEFT_BRACKET constant_expression RIGHT_BRACKET

init_declarator_list:
single_declaration
init_declarator_list COMMA IDENTIFIER
init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT BRACKET

init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression
RIGHT _BRACKET

init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration:
fully_specified_type
fully_specified_type IDENTIFIER
fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET
fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET
fully_specified_type IDENTIFIER EQUAL initializer

/I Grammar Note: No '‘enum’, or ‘typedef'.

fully_specified_type:
type_specifier
type_qualifier type specifier

type_qualifier:
CONST
ATTRIBUTE // Vertex only.
VARYING
UNIFORM

type_specifier:
VOID
FLOAT
INT
BOOL

The OpenGL Shading Language 68

VEC2

VEC3

VEC4

BVEC2

BVEC3

BVEC4

IVEC2

IVEC3

IVEC4

MAT2

MAT3

MAT4

SAMPLER1D
SAMPLER2D
SAMPLER3D
SAMPLERCUBE
SAMPLERIDSHADOW
SAMPLER2DSHADOW
struct_specifier
TYPE_NAME

struct_specifier:
STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RI
STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list:
struct_declaration
struct_declaration_list struct_declaration

struct_declaration:
type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:

struct_declarator
struct_declarator_list COMMA struct_declar ator

69

SHADING LANGUAGE GRAMMAR

GHT_BRACE

TheOpenGLsShadingLanguage

SHADING LANGUAGE GRAMMAR

struct_declarator:
IDENTIFIER
IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

initializer:
assignment_expression

declaration_statement:
declaration

statement:
compound_statement
simple_statement

/I Grammar Note: No labeled statements; 'goto’ is not supported.

simple_statement:
declaration_statement
expression_statement
selection_statement
iteration_statement
jump_statement

compound_statement:
LEFT_BRACE RIGHT _BRACE
LEFT_BRACE statement_list RIGHT _BRACE

statement_no_new_scope:
compound_statement_no_new_scope
simple_statement

compound_statement_no_new_scope:
LEFT_BRACE RIGHT BRACE

LEFT_BRACE statement_list RIGHT _BRACE

statement_list:

The OpenGL Shading Language 70

SHADING LANGUAGE GRAMMAR

statement
statement_list statement

expression_statement:
SEMICOLON
expression SEMICOLON

selection_statement:
IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement:
statement ELSE statement
statement

/I Grammar Note: No 'switch'. Switch statements not supported.

condition:
expression
fully_specified_type IDENTIFIER EQUAL initializer

iteration_statement:
WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope
DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON
FORLEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN statement_no_new_scope

for_init_statement:
expression_statement
declaration_statement

conditionopt:
condition
[* empty */

for_rest_statement:

conditionopt SEMICOLON
conditionopt SEMICOLON expression

71 TheOpenGLsShadingLanguage

SHADING LANGUAGE GRAMMAR

jump_statement:
CONTINUE SEMICOLON
BREAK SEMICOLON
RETURN SEMICOLON
RETURN expression SEMICOLON
DISCARD SEMICOLON // Fragment shader only.

/I Grammar Note: No 'goto’. Gotos are not supported.
tranglation_unit:

external_declaration

translation_unit external_declaration
external _declaration:

function_definition

declaration

function_definition:
function_prototype compound_statement_no_new_scope

The OpenGL Shading Language 72

ISSUES

| 10 ISSUES

1) Should the programs that run on these programmable processors be called shaders or programs?

DISCUSSION: Shader fitsin with common usage in RenderMan and DX8. Thereis some argument
that shading has connotations of being a color operation so doesn't fit with a vertex operation.
RenderMan doesn't make this distinction, nor does DX8. It seemswise to go a ong with the common
usage of shader as ageneral term for aprogram that operates on some part of a graphics pipeline.

RESOLV ED on October 12, 2001: The term shader will be used.

Note: Shader isused to denote a single independent compilation unit. Program is used to denote a
set of shaders linked together.

CLOSED on September 10, 2002.
2) Should there be a separate programmable unit for doing the pixel transfer operations?

DISCUSSION: We originally had the concept of a separate pixel shader where the pixel and imaging
operations would be done. On further consideration it seemed very unlikely that anyone would
implement this as an independent functional unit but rather do them in the fragment shader behind the
scenes. OpenGL treats pixel and fragment operations as mutually exclusive so sharing one
processing unit isanatural implementation. Forcing an abstraction that differed from reality seemed
to be a hindrance apart from increasing the amount of work.

RESOLYV ED on October 12, 2001: No, the fragment processor will be used to process both geometry
and pixel data.

CLOSED on September 10, 2002.
3) Should shaders be allowed to subset the fixed functionality that they replace?

DISCUSSION: There would be alot of complexity in defining the interfaces to allow subsetting. It
isn't very difficult to write shaders that implement the whole of the graphics processing pipeline.

RESOLV ED on October 12, 2001: No, shaders cannot subset the fixed functionality they are
replacing. If shaderswant to change the lighting in some way then they have to do the other items as
well. It will be helpful to have example shaders that fully implement the OpenGL fixed functionality
pipeline.

CLOSED on September 10, 2002.

4) Should a higher level shading language be layered on top of OpenGL instead of being designed to fit
within OpenGL?

DISCUSSION: In the current design, the shading language is integrated into OpenGL and just
provides alternative methods to the state controlled pipeline outlined earlier. The Stanford approach
isto layer their shading language on top of OpenGL. This has some advantages and disadvantages
that will become apparent when the differences are examined.

73 TheOpenGLsShadingLanguage

ISSUES

5)

6)

The Stanford approach uses a higher abstraction level. This helps with writing some kinds of
programs where the abstractions match the problem domain. For exampletreating lights and surfaces
as abstract entities makes some 3D graphics operations easier, however OpenGL ishow being used
for video and image processing where this abstraction is largely irrelevant. Similarly many games
have shunned lighting via traditional means and use textures (light maps) instead.

Thereis nothing in the language or bindingsthat prevent higher levels of abstractions from being
layered on top of a programmable OpenGL. We also wish to keep the overall abstraction level of
OpenGL at its current level.

The Stanford approach also provides for different computational frequencies. By having the higher
levels of abstraction where one program defines the current graphics operation in total allowsthe
compiler to separate out the parts that need to run at the primitive group level, primitive level, vertex
level and fragment level. The compiler can therefore generate the code to run on the CPU, vertex
processor and fragment processor as appropriate. Thisis obviously more complicated to implement
than having the programmer specify the programs to run on each part of the pipeline (although some
hints are still required by the Stanford language), although this does make the virtualization of the
hardware easier as the compiler has the overall view.

The mgjor disadvantage of thisisthat it forces moreintrusive changesto OpenGL to support the clear
delineation of the primitives, vertices and fragment operations. Many of the core OpenGL features
have been replaced or are not available and it is not possible to use the standard OpenGL
transformation and lighting operations with a custom fragment shader (or vice versa), or to allow one
vertex shader to drive multiple fragment shaders. An advantage of the current approach is that the
look and feel of OpenGL 1.4 is maintained and it allows a graceful mix and match approach during
the transition period from fixed functionality to full programmability.

Thisis not a criticism of the Stanford work, as they had no choice but to layer on top of OpenGL.

RESOLVED on October 12, 2001: The OpenGL Shading L anguage should be built into OpenGL,
and not layered ontop. Itisalso noted that if thisis not the case, OpenGL should still have a standard
shading language, so this document still remains. Hence, this issue is not one against this document
but one against the OpenGL API.

CLOSED on September 20, 2002, as moved to the APl issueslist.

Should the shading model be part of the fixed functionality fragment processing that is replaced by
the fragment processor?

DISCUSSION: The shading model selects between Gouraud and flat shading and this would seem
natural to havethisas part of the functionality replaced by the fragment shader. Flat shading involves
knowledge of the primitive type (for the provoking vertex) and this doesn't really belong in the
fragment shader. The fragment shader can always assume the color is interpolated and the shading
model isflat then the set up calculations for the color gradients can set the gradients to zero.

RESOLVED on October 12, 2001: No, the shading model is not replaced by the programmable
functionality of the fragment processor.

CLOSED on September 10, 2002.
I's alpha testing programmable?

DISCUSSION: The fragment shader has a function to kill fragments so could do a pha-like testing,
however the OpenGL pipeline specifies that alphatesting should happen after coverage has modified
the alpha value. We do not want to do coverage in the fragment shader so the alpha test remains

The OpenGL Shading Language 74

7)

8)

ISSUES

outside. If the user is happy to do a phatesting before coverage in their own programs then they can
do this.

RESOLVED on October 12, 2001: Yes, applications can do alphatesting in a fragment shader, with
the proviso that, when done in the fragment shader, it happens before the coverage computation.

CLOSED on September 10, 2002.
Is alpha blending programmable?

Fragment shaders can read the contents of the frame buffer at the current location using the built-in
variablesgl_FBColor, gl_FBDepth, gl_FBSencil, and gl_FBDatan. Using these facilities,
applications can implement custom algorithms for blending, stencil testing, and the like. However,
these frame buffer read operations may result in a significant reduction in performance, so
applications are strongly encouraged to use the fixed functionality of OpenGL for these operations if
at al possible. The hardware to implement fragment shaders (and vertex shaders) is made alot
simpler and faster if each fragment can be processed independently both in space and in time. By
allowing read-modify-write operations such asis needed with al pha blending to be done as part of the
fragment processing we have introduced both spatial and tempora relationships. These complicate
the design because of the extremely deep pipelining, caching and memory arbitration necessary for
performance. Methods such as render to texture, copy frame buffer to texture, aux data buffers and
accumulation buffers can do most, if not all, what programmable alpha blending can do. Also the
need for multiple passes has been reduced (or at least abstracted) by the high-level shading language
and the automatic resource management.

RESOLVED on October 12, 2001: Yes, applications can do alpha blending, albeit with possible
performance penalties over using the fixed functionality blending operations.

REOPENED on July 9, 2002: Thisissueisrelated to Issue (23) which remains open, so thisissue
should also remain open.

Another possibility would be to create an extension that allows more flexibility than the current alpha
blending allows, but would still be considered fixed functionality.

RESOLUTION: Issue 23) isresolved as alowing frame buffer reads, so thisis once again resolved
allowing alpha blending, with the caveats listed above.

REOPENED on December 10, 2002. |ssue 23 isre-resolved to disallow frame buffer reads.
RESOLUTION: No, applications cannot do alpha blending, because they cannot read alpha.
CLOSED on December 10, 2002.

Should the language be defined in such a way that it can be implemented on existing hardware?

DISCUSSION: Today’s generation of hardware does have some programmability. It seems desirable
to define alanguage that would work on today’s hardware as well as tomorrow’s.

RESOLVED on October 12, 2001: We have tried to make the shading language forward looking and
pitched at alevel we believe hardware can attain within ageneration or two. We have avoided adding
features (such as small fixed point data types or implicit clamping) or dumbing down (removal of
loops and functions) the language to better support existing hardware asthisis aretrograde step. It
would be possibleto run alimited subset of shaders on existing hardware but it is not going to be easy
for an application to determine in a portable way if the shader will run or if it will produce acceptable
results. Overall, the decision hereisto set agoal for hardware to strive towards for the next few years.

75 TheOpenGLsShadingLanguage

ISSUES

9)

10)

1)

12)

CLOSED on September 20, 2002.
Should the concept of the preprocessor for the language be dropped?

DISCUSSION: We could do without the #ifdef by using if (false) and we rely on compiler stripping
out code which cannot be reached. The C++ spec seemsto be deemphasizing the use of #ifdef but we
are still retaining it because it is a common idiom, it is easier to seein the code and it can be used in
places where the grammar doesn't alow if (false).

Do we want avendor specific predefined #define to allow compiler problemsto be worked around?
From an idealistic view point no asit provides aback door for extensions, but pragmatically
differences will occur. We have already seen instances of shader writers using #define to make
shaders more readable (e.g., #define MV P gl_Model ViewProjectionMatrix).

RESOLVED on October 12, 2001: No, the preprocessor should be retained. The preprocessor
directives that are supported are #ifdef, #ifndef, #undef, #else, #endif, #pragma, #define token
(without arguments), and #error.

Issue (55) is added to address additional preprocessor directives.
CLOSED on September 10, 2002.
Should the fiel ds representing texture components be named s, t, p, and q?

DISCUSSION: Other alternatives to renaming texture r were considered but rejected because they
seemed to be more confusing or error prone. A) Use red, green, blue, alphainstead for color
component selection. This makes the component group mechanism described later too cumbersome.
B) Capitalize either the color or texture component names. C) Drop the names for color or texture.
We didn't want to abandon some notational convenience of one of the important usage of vectors. D)
Change the color component order to be bgra so that the two r components now lined up. This color
order is quite alien to OpenGL so this would lead to many confusing situations in how the existing
API values mapped to the values the shader used.

RESOLVED on October 12, 2001: Yes, using s, t, p, and g as the namesfor fields representing texture
componentsisthe best choice.

CLOSED on September 10, 2002.
Should there be two separate active fragment shaders to handle back facing and front facing cases?

DISCUSSION: If the user specifies two fragment shaders, one for front facing fragments and one for
back facing fragments, the appropriate one could be run automatically. This probably gives a faster
shading rate but it forces the user to maintain two programs (where probably most of the codeis
common). This could be done transparently by the compiler if an implementation wishesto optimize
for this case.

RESOLV ED on October 12, 2001: No, asingle shader should be used to handle both back facing and
front facing geometry.

CLOSED on September 10, 2002.
Should built-in functions be required to differ by more than just return type?

DISCUSSION: Overloading functions that differed in return type only was considered. However,

initial work on the compiler has shown that thisfacility seriously complicates the semantic analysis
of an expression to deduce the return type when it is unambiguous, but buried within an expression.
This may be more complicated than it isworth (and may be the reason why C++ doesn't allow this).

The OpenGL Shading Language 76

13)

14)

15)

16)

ISSUES

Add on the need for a new syntax for the programmer to use to disambiguate ambiguous cases, and
it's simply easier to give functions different names for different return types.

RESOLVED on February 25, 2002: Yes, built-in functions must differ by more than just return type.
CLOSED on September 10, 2002.
How is the noise function defined to allow consistent behavior from one implementation to the next?

DISCUSSION: The noise function is very useful and plays arole in many shading techniquesin
RenderMan. It poses a problem in specification (and conformance testing) in that perfectly valid
noise functionswill give very different results. OpenGL has avoided specifying operations so tightly
that different implementation will give pixel exact results — this allows an implementation some
latitude in accuracy/performance/cost trade-offs. It also avoids having to specify everything down to
minute detail. Perlin (the originator of the noise function) has recognized the desirability of a
standard noise function (much like everyone expects the sin function to behave in the same way) and
has documented hisideas. Maybe this should be a strongly recommended implementation.

Thisissueis nearly the same as I ssue (36).

RESOLV ED on September 19, 2002: No specific implementation of noise is required, but the
specification will attempt to define the noise function in such away that similar results can be
achieved from one implementation to the next.

CLOSED on September 19, 2002:
Should fields be allowed to have numeric selectors (e.g. foo.2)?

DISCUSSION: This breaks the usual convention of identifiers starting with aletter. It makesthe
language | ess pure, makes lexica analysis more difficult, and adds constraints on how numbers are
expressed.

RESOLVED on September 10, 2002: No, the language should be changed so there are ho numeric
selectors as suggested in Issue (16).

CLOSED on September 10, 2002.
Should we allow fields that swizz e the components of a vector?

DISCUSSION: This seemslike an overly complicated part of the language, with no additional
functionality that couldn't be easily expressed with other parts of the language. On the other hand, the
swizzling is exposed in lower level assembly languages. On the third hand, perhapsthisisjust a
“feature” of hardware that shouldn’t/doesn’t need to be exposed in a high level language. On the
fourth hand, some useful examples of swizzling have been demonstrated, and it isn't very hard to
support in the compiler.

RESOLV ED on September 10, 2002: Swizzling of components is deemed to be a useful language
feature that will be retained.

CLOSED on September 10, 2002.
Should there be a way to indirectly reference into a vector or matrix?

DISCUSSION: Issue (14) and this one could be simultaneously fixed by adding [] as anumeric way
of indexing into avector. Then, one would say foo[2], never f00.2, solving Issue (14), and foo[x] as
an indirect reference. Numbers could then be expressed asin C.

77 TheOpenGLsShadingLanguage

ISSUES

17)

18)

19)

20)

RESOLV ED on September 10, 2002: Yes, indirect references into vectors and matrices should be
allowed in the manner suggested in the discussion above.

CLOSED on September 10, 2002.
Should gl_Position and other currently "write-only" variables be readable?

DISCUSSION: Thisissimply acompiler feature, with no implication to hardware support. It's
often cumbersome to write code without this feature. The compiler can use temporaries to store
intermediate values if necessary. Thiswill make programs alittle bit cleaner as well.

On the other hand, the api model of read-only inputs and write-only outputs is probably cleaner for
the shader writer.

RESOLV ED on September 19, 2002. Yes, “write-only” variables are allowed to be readable.
CLOSED on September 19, 2002.
How should performance/space/precision hints be provided?

DISCUSSION: One basically agreed on so far isfor varying: "varying" means perspective correct,
while"fast varying" meanstake a short cut if it savestime. Perhapswe can define a#pragmafor this.
Perhaps this could also be applied in other areas.

RESOLUTION: Performance/space/precision hints and typeswill not be provided as a standard part
of the language, but reserved words for doing so will be.

CLOSED: November 26, 2002.
Should the built-in function “ lookup” be added?

DISCUSSION: Textures can be used as look-up tables, not just textures. The main difference is that
look-up tables would have atype associated with the return.

RESOLUTION: Yes, the lookup functions should be added as built-in functions so that shader can
express the type of the returned value. Functions like i8texture3 will be added to mean three 8bit ints
are being looked up. Thiswill still be called atexture, asit is expected to share texture resources. A
generic table lookup that is separate from texture resources is deferred until version 1.1.

CLOSED October 22, 2002.

NOTE: These were |later removed as part of fitting this language on OpenGL 1.4, as that does not
support textures these functions would operate on.

Should ints greater than 16 bits be added?

DISCUSSION: The shading language is designed in away that it does not overburden the hardware
designer by requiring alot of unnecessary and redundant features. Integers are useful and may be
more efficient for use as loop counters and array indices. 16-bit integers were added to the language
as a concession to efficiency for these cases. The mantissa of a floating point value can be used to do
integer operations, therefore hardware designers are not required to have a full integer math unit in
addition to the floating point math unit. If this were to end up being the key factor in deciding this
issue, integers could be defined to be 23 bitsin size (at least for operations within the processor),
since thisisthe size of the mantissa of an IEEE FP32 value. As another data point, Renderman does
not support integers at all.

RESOLUTION: There are hardware reasons today to limit ints to 16 bits, so they will be.
CLOSED: November 19, 2002.

The OpenGL Shading Language 78

ISSUES

21) Should vectorsor (local variable) arrays of ints be added?

DISCUSSION: The lookup function proposed in Issue (19) could return 3 integer values, for
example. Shaders are not just floating point algorithms, but aso do things like table lookups,
indirection, and other generic algorithmic computation. The language does not have to map directly
to hardware. On the other hand, to support this we would have to add ivec2, ivec3, and ivec4, or
allow local variable arrays of ints.

RESOLUTION: Yes. Vectorsof intswill be added.
CLOSED: November 5, 2002.
22) Should recursion be supported?

DISCUSSION: Probably not necessary, but another example of limiting the language based on how it
would directly map to hardware. One thought is that recursion would benefit ray tracing shaders. On
the other hand, many recursion operations can also be implemented with the user managing the
recursion through arrays. RenderMan doesn't support recursion. This could be added at alater date, if
it proved to be necessary.

RESOLVED on September 10, 2002: |mplementations are not required to support recursion.
CLOSED on September 10, 2002.
23) Should the fragment shader be allowed to read the current location in the frame buffer?

DISCUSSION: It may be difficult to specify this properly while taking into account multisampling. It
also may be quite difficult for hardware implementors to implement this capability, at least with
reasonable performance. But this was one of the top two regquested items after the original release of
the shading language white paper. |SV's continue to tell us that they need this capability, and that it
must be high performance.

RESOLUTION: Yes. Thisisallowed, with strong cautions as to performance impacts.

REOPENED on December 10, 2002. Thereistoo much concern about impact to performance and
impracticallity of implementation.

CLOSED on December 10, 2002.

24) Does anything need to be added to the language to allow programs can be compiled at compile time,
and not need to have multiple compiled versions saved for OpenGL state changes?

DISCUSSION: It isstrongly desired that implementations can generate proper code at compiletime,
and not have to have multiple compiled versions or later recompilation in case OpenGL state changes
at alater time (e.g., not knowing the attributes of atexture map until execution time). Maybe another
area where more hints are needed in the language, or maybe hardware evolution can take care of the
issues.

RESOLUTION: Thisisresolved to be ageneral design goal of the OpenGL shading language... that
other issues be resolved with the intent that the object code generated from a shader be independent
of other OpenGL state.

CLOSED: November 5, 2002.

25) Should we add min and max that take gen-type and a scalar, to match clamp semantics?
RESOLUTION: Yes, these should be added.
CLOSED: September 22, 2002.

79 TheOpenGLsShadingLanguage

ISSUES

26)

27)

28)

29)

30)

Should the programmability be broken out by function (e.g., light shaders, surface shaders, transform
shaders, texgen shaders, etc.) rather than the hardware-centric method (vertex and fragment
shaders) in the current proposal ?

RESOLV ED on December 7, 2001: No, the notion of vertex and fragment shaders fitsin much better
with OpenGL as a hardware-centric APl and has received positive feedback during review.

CLOSED on September 10, 2002.
Should texture units be specified as a keyword or a number?

DISCUSSION: For the built-in texture access functions, the texture unit is specified as anumber.
Should it be defined as a keyword instead? The current feeling is that in certain casesit is more
convenient to specify the texture as a programmatic value rather than a keyword.

Thisissueis actually part of Issue (51).

RESOLVED on December 7, 2001: The texture unit is specified as a number. In certain casesit is
more convenient to specify the texture as a programmatic value rather than a keyword.

REOPENED on July 12, 2002: Need further discussion of the real convenience provided.
RESOLUTION: Resolved asissue 51.

CLOSED October 22, 2002.

Are global values auto-initialized?

RESOLV ED on December 7, 2001: No, global values are not auto-initialized. It may be useful for an
implementation to support auto-initialization as a debug mode option, however.

CLOSED on September 10, 2002.
Should the language support bit-wise operations?

RESOLV ED on December 7, 2001: The language itself has support for bit-wise operations. In certain
programmabl e units (pack and unpack processor) these are vital. However, thereisa desire to cap the
complexity of each programmable unit. For the vertex and fragment processors, Boolean operations
are supported but general bit-wise operations are not. Thisisto avoid requiring full functionality
integer processing on top of the already-required floating point capabilities of these processors.

REOPENED on July 12, 2002: Certain bit operations are very useful and cannot be easily emulated
with floating point operations. For instance, applications could multiple fields of data into texture
components and use the bit-wise operators to extract those values (for instance, using 12-bits of a 16-
bit luminance texture to store intensity, and the remaining four bits to store opacity). Giving shaders
the abillity to do this type of extraction would be preferable to defining new texture formats.

Another way of handling this functionality iswith a built-in function to extract a bitfield out of an
integer, asthisis one expected use of bit-wise operators.

This interacts with issue 90. Without integer textures, there is less need to solve this issue.
RESOLUTION: Bit-wise support is deferred to afuture rel ease.
CLOSED: December 10, 2002.

Should internal computations be required to be carried out with 32-hit floating point precision? Or
should implementations be allowed to carry out computations with higher or lower precision if they
so desire?

The OpenGL Shading Language 80

31)

32)

33)

34)

35)

36)

ISSUES

DISCUSSION: Thisissueisrelated to Issue (33) and Issue (68).

RESOLUTION: Itisalready implicit that floating point requirements must adhere to section 2.1.1 of
version 1.4 of the OpenGL Specification. Thisis sufficient.

CLOSED: November 26, 2002.
Can you override the computed LOD or bias within a fragment shader?

RESOLVED on October 12, 2001: The computed LOD may be biased by a value provided by a
fragment shader. Built-in texture access functions with an LOD argument are provided for this
purpose.

CLOSED on September 19, 2002.

Areinterpolated values perspective correct?

RESOLVED on June 3, 2002: Yes, variables defined as varying are perspective correct.
CLOSED on September 10, 2002.

Should precision hints be supported (e.g., using 16-bit floats or 32-bit floats)?

DISCUSSION: Standardizing on a single data type for computations greatly simplifies the
specification of the language. Even if an implementation is allowed to silently promote a reduced
precision value, a shader may exhibit different behavior if the writer had inadvertently relied on the
clamping or wrapping semantics of the reduced operator. By defining a set of reduced precision
types all we would end up doing is forcing the hardware to implement them to stay compatible.
When writing general programs, programmers have long given up worrying if it is more efficient to
do acalculation in bytes, shorts or longs and we do not want shader writers to believe they have to
concern themselves similarly. The only short term benefit of supporting reduced precision data types
isthat it may allow existing hardware to run asubset of shaders more effectively.

Thisissueisrelated to Issue (30) and Issue (68).

RESOLUTION: Performance/space/precision hints and types will not be provided as a standard part
of the language, but reserved words for doing so will be.

CLOSED: November 26, 2002.

Should the design of the OpenGL Shading Language include support for shaders that are not real-
time in nature?

RESOLVED on September 19, 2002: Yes, the design of the language should take into account
applications that are not real-time in nature.

CLOSED on September 19, 2002.
Should additional types such as point, normal, color, etc. be added to the shading language?

RESOLV ED on October 12, 2001: No, these type should not be added. The existing generic vector
types can support them all without the need for adding additional typesto the language.

CLOSED on September 10, 2002.

Will everyone have different implementations for smoothstep and noise, or should we try to specify
and enforce a common implementation of these?

81 TheOpenGLsShadingLanguage

ISSUES

37)

39)

39)

40)

DISCUSSION: Thisissueis nearly the same as Issue (13). The definition of smoothstep should be
sufficient. OpenGL isnot pixel-exact, and the definition of smoothstep is as accurate asit needsto be
for the specification.

RESOLVED on September 19, 2002: There is alot of room for a variety of implementations of the
OpenGL Shading language. Even with OpenGL today, it is not expected that pictures produced on
two different pieces of hardware will produce identical results. The specification should be written in
such away that implementations will produce very similar (though not identical) results.
Conformance testing for the OpenGL Shading Language is an issue for the OpenGL ARB to wrestle
with in the future.

It has further been decided to add a source specification of noise() to the spec. But, thisis not done.
CLOSED on September 19, 2002.
Should the fragment shader functionality to “ kill” a fragment be a keyword or a built-in function?

DISCUSSION: Kill feelslike aflow control directive similar to break and continue. It's not a
function which should be overridden by a user function. The Boolean expression can be evaluated in
an if statement that precedes the keyword kill. There's no reason to continue processing once kill is
executed, so no reason to disguise it as afunction call. kill(bool Expr); asa shortcut for if (bool Expr)
kill; is not much savings.

RESOLVED on April 15, 2002: The fragment shader functionality to “kill” afragment should be a
keyword.

CLOSED on September 19, 2002:
Should the built-in texture and noise functions be available from within the vertex shader?

DISCUSSION: There have been numerous requests to support displacement mapping. This request
could be satisfied by allowing the built-in noise and texture functions to be available to vertex
shaders aswell as fragment shaders. This could be implemented in hardware by having the compiler
split the vertex shader into a prolog, a texture/noise access, and an epilog. The prolog would be
executed by the vertex processing hardware, and the texture/noise access would be done by the
fragment processing hardware. The intermediate results would be fed back through the vertex
processing hardware to execute the epilog, and then passed on to the fragment shader for fragment
processing. On the other hand, it is possible for applications to do this al on the host CPU.

RESOLUTION: Yes, the texture and noise functions should be made avail able from within the vertex
shader as well.

CLOSED October 22, 2002.

Should it be defined that interpolated values for varying variables are determined by sampling at the
fragment center?

DISCUSSION: This interacts with multisampling and requires further investigation.

RESOLUTION: Thisisto follow the same rules as outlined in section 3.2.1 of version 1.4 of the gl
specification.

CLOSED: November 26, 2002.

Should unsigned ints be supported in the language for vertex and fragment processing?

The OpenGL Shading Language 82

41)

42)

ISSUES

DISCUSSION: Thisissueisrelated to Issue (29). If we allow bit-wise operators, there probably
needs to be a way to specify either signed or unsigned integers. Currently unsigned ints are defined
only for the pack and unpack shader languages, not for the vertex and fragment languages.

RESOLUTION: Becauseit has been resolved that integers carry 16 bits of precision, in additionto a
sign hit, it is not necessary to introduce an unsigned integer type.

CLOSED: November 26, 2002.
Aregl_FrontMaterial and gl_BackMaterial attributes or uniforms?

DISCUSSION: The spec currently defines these as attribute arrays, but the spec also saysthat arrays
are not allowed for attributes. If we want to treat them as uniforms, they can remain as arrays.
Otherwise, we should change the names and definitions so as to not use arrays (i.e., give each
attribute a unigue name).

RESOLV ED on September 19, 2002: These will be treated as uniforms. Moving forward, we would
rather encourage applications to use user-defined attributes if these need to be changed at every
vertex.

CLOSED on September 19, 2002.

Should there be a way to specify that the transformed position generated by a vertex shader should be
invariant with respect to the fixed functionality pipeline?

DISCUSSION: This feature was requested by an |SV. Without it, on many graphics architectures, it
may be impossible to precisely match geometry rendered using a vertex shader with geometry
rendered using the fixed functionality path.

One possible solution is to change the spec where it says that the built-in variable gl_Position must be
written by all vertex shaders. Instead, if the variable gl_Position is not written by the vertex shader,
the vertex position will be transformed in a manner that is invariant with respect to the fixed
functionality pipeline. If gl_Position iswritten by the vertex shader, the resulting position may or
may not be invariant with respect to the fixed functionality pipeline.

But this solution increases the risk that a shader writer might inadvertently fail to write gl_Position,
which will now not generate an error but rather invariant transform gl_Vertex. So hereis apossible
set of alternative resolutions. Since we have built-in functions, a built-in function might be a clean
solution to the request for an invariant transformation. All three built-in functions below could
provide for invariant transform of gl_Vertex. Alternative (A) will be most familiar to RenderMan
shader writers (minus the named spaces). Alternatives (B) and (C) only provide for invariant
transform, with (B) alowing the input to be specified while (C) implicitly inputs gl_Vertex.

The original suggested resolution, and these alternative resolutions, solve the ISV request, but in
different manners.

(A) Built-in function:

genType transform([mat xform,] genType coord) If matrix is specified, return xform*coord. Else,
transform coord invariant to fixed function method.

Examples:

/1 transformby MVP, not necessarily invariant with fixed function.
gl _Position = transform gl _Mdel Vi ewProj ecti onMatrix, gl_Vertex);

/1l transforminvariant with fixed function.

83 TheOpenGLsShadingLanguage

ISSUES

gl _Position = transforn(gl _Vertex);

(B) Related to (A), but no optional matrix:
genType transform(genType coord) Transform coord invariant to fixed function method
Example:

/1 transforminvariant with fixed function.

gl _Position = transform(gl _Vertex);
(C) Related to (B), but no arguments, rename function:
vecd fixedtransform() Output invariant with fixed function method, implicit input is gl_Vertex.
Example:

gl _Position = fixedTransform();

RESOLUTION: Use option C from above.
CLOSED October 22, 2002.

43) What is definition of built-in derivative functions of gl_FB*?

DISCUSSION: An short example fragment shader demonstrates the question best.

voi d mai n(voi d)

{
}

gl _FragCol or = dFdy(abs(gl _FBCol or));

Earlier whitepapers allowed generd framebuffer read within the fragment processor. OpenGL
generally only specifies the fragments to be generated by rasterization, not the order the fragments
are generated by rasterization. So general framebuffer reads within the fragment processor could
lead to undefined behavior.

L ater whitepapers permit only restricted framebuffer reads within the fragment processor. (The pixel
at the xw, yw window coordinates of the fragment.). So the question becomes, do the built-in
derivative functions conceptually require an implicit genera frambuffer read (at least in the
immediate neighborhood of the pixel at the xw, yw window coordinates of the fragment)? What does
"at any given point in time" mean in this context?

Possible resol utions:
a) Don't allow gl_FB* read operations in the fragment processor. (This interacts with I ssue (23).)

b) The built-in derivative functions are undefined if agl_FB* isaparent of an expression. (The built-
in derivative functions are in some cases undefined within the body of a conditional or loop.)

Rejected resolutions:
c) Explicitly define the order which fragments are rasterized by OpenGL.

RESOLUTION: gl_FB* have been removed. Issue 23 has been reopened and closed as disallowing
frame buffer reads.

CLOSED on December 11, 2002.

The OpenGL Shading Language 84

ISSUES

44) Should the uniform variables that represent current OpenGL state be available only to specific
processors or available to any processor?

DISCUSSION: The current specification is biased toward vertex lighting and fragment shading.
Currently, OpenGL state represented as built-in uniform variables is available only to a specific
processor (e.g., lighting state is available only to the vertex processor). This makes it unnecessarily
difficult for the fragment shader to do lighting cal culations with the OpenGL state. The specification
should be agnostic about which shaders will need access to what built-in uniform OpenGL state.

RESOLUTION: OpenGL state that is encapsulated as a uniform variable should be accessible to any
processor.

CLOSED October 22, 2002.

45) Should naming conventions for OpenGL state be the same as those adopted for the
ARB_vertex_program extension?

DISCUSSION: Where the OpenGL Shading L anguage defines gl_ModelViewMatrix to refer to a
specific piece of OpenGL state, the ARB_vertex_program extension uses state.matrix.modelview.
Should the conventions be the same for consistency?

The OpenGL Shading Language conventions for referring to GL state were devel oped before it was
clear that an ARB vertex program extension would even be possible due to | P issues and lack of
consensus. ARB_vertex_program (and ARB_fragment_program) state binding might confuse some
to think of the syntax as astructurein a C-like language. (Lessrisk of this confusion in an assembly-
ish language.) And ARB_vertex_program and ARB_fragment_program packs state into vec4s.
Thereisless of aneed for such packing in a C-like language.

RESOLVED on August 13, 2002: No, the conventions need not be the same. There isn't enough
interest in making this name change at this point.

CLOSED on September 10, 2002.
46) What is the expected behavior for general derivatives at object silhouettes?

DISCUSSION: It would have to be the local instantaneous derivative if it's to be used for filter width
or lod computation. That pretty much dictates that no implementation can |ook to neighboring
fragments to compute derivatives, sinceit is always possible to construct an object that hits only one
fragment (and so has no valid neighbors).

RESOLUTION: See derivative section of paper.
CLOSED on December 4, 2002.
47) Should the derivative functions have names that are more similar to those used in Renderman?

DISCUSSION: The naming of the derivative functions is somewhat at odds with the precedent
established by RenderMan, where Du(f) and Dv(f) compute df/du and df/dv respectively. dPdu and
dPdv are potentially more accurate, but functionally equivalent to Du(P) and Dv(p), where P is the
built-in variable for 3D location of the sample. We should at least consider Dx() and Dy() for the
names of the OGL 2 derivative functions.

RESOLUTION: Names are changed to drFdx, dFdy.
CLOSED on December 4, 2002.
48) Should a dPdz (or D2) function be added?

85 TheOpenGLsShadingLanguage

ISSUES

49)

50)

DISCUSSION: If someone wanted to derive df/du and df/dv We'd also need dPdz() or Dz() to avoid
asingularity at object silhouettes

RESOLUTION: Thisis not added.
CLOSED on December 4, 2002.
Should the shading language include structs?

DISCUSSION: The shading language should support structs. Structs provide a clean way of grouping
data to create abstract data types. They are convenient for developers and are supported in C and
other generic programming languages.

On the other hand, no compelling case for adding structs to the language has been made. It could help
us get the language finalized sooner if we left thistill alater rev of the language specification. But, if
structures were added, it would be nice to define the lighting state in terms of structs. Vital Images
(ISV) indicates they would like to have structs in the language.

RESOLVED on September 19, 2002: The shading language will include structs.
CLOSED on September 19, 2002.

Should the vertex processor be defined in a way that allows it to perform tessellation of curved
surfaces?

DISCUSSION: Theissue of geometric LOD and curved sufficesis so complex and is so continuously
devel oped that no piece of hardware simpler then ageneral purpose programmable CPU is up for the
job. Any choice of primitive, will be heavily disputed. And most of the popular curved surface
primitives like creased subdivision surfaces or trimmed NURBS are not easily implemented in
hardware.

If we look at the problem form a performance view, the generation of LODs are generally not the
problem since new LODs don't need to be generated to often, only when the geometry in asignificant
way has moved closer or further away from the camera. The problem comes in when we have
animation of interactive manipulation of the surface. In these cases the topology doesn't change so
this can be solved on a very efficient way. We simply store alist of referencesto CV's and weighting
factorsfor each vertex in the LOD.

This simple code can accommodate all types of curved surface:

for(i = 0; i <vertex_count; i++)
{
x = 0;
y = 0;
z = 0;
for(j = 0; j < *influence_list_length; j++)
{
i ndex = *index_array++;
val ue = *val ue_array++;
x += value * control _vertex_array[index]. x;
y += value * control _vertex_array[i ndex].y;
z += value * control _vertex_array[index]. z;
}
surface_vertex_array[i].x = Xx;
surface_vertex_array[i].y =v;

surface_vertex_array[i].z

The OpenGL Shading Language 86

51)

52)

ISSUES

influence_list_|ength++

}

This could be integrated in the vertex shader to allow for maximal flexibility, but this means that
vertex shaders must have the ability to do random access arrays of data.

RESOLUTION: Postponed to a future version of this specification.
CLOSED: October 22, 2002.

Should the language provide some mechanism to distinguish variables that are position independent
from those that aren't?

DISCUSSION: Comments have been made along the lines of "should we really expose SIMD
semantics in the language?' Response:

» What's really being introduced is position independence.

* The existing 'uniform’ and 'varying' already introduce this concept, this proposal just
completesiit.

* Most hardware will benefit from it.

Feasibility: It's possible for a compiler to do sufficient data-flow and control-flow analysisto find all
paths that could lead to the assignment of a position independent variable. It may find extra paths,
but isnot allowed to miss any actual paths. From this, a compiler can proveif a position independent
variable only takes on values that are position independent. It may, on rare occasion say a position
independent variable is not so, and be wrong, but these will typically occur in degenerate code.

Globa Uniforms. It's asking too much of a compiler to do cross-function data-flow analysis,
especially across different compilation units. So, the idea of global read/write position independent
variablesis not supportable and not proposed. Hence, there is no conflict between these uses of
'uniform’.

Output Uniform Parameters. Same problem as uniform globals. Uniform globals and parameters
must be read only.

A past alternative was to use the 'int' type as a hint to the compiler that a value was position
independent, like for loop indexes, texture ids, array subscripts, etc. Thiswas troublesome, because
floating point based control flow could make the hint invalid, leaving the compiler as burdened as it
would be without the hint. And/or it made the 'int' type less useful, forcing it to adhere to the
proposed ‘uniform’' semantics. This was too much tying together of otherwise independent idess.

Thisissueisrelated to Issue (27).

RESOLUTION: Use the 'uniform’ qualifier to identify locally scoped variables, function return
values, and function parameters as being position independent. Loca ‘uniform’ variables cannot be
written to with values that were derived from position. Functions declared to return a'uniform’ can
only return values not derived from position.

The compiler may return awarning if there is astatically identifiable path through the code that
leaves a position dependent derived value in a position independent variable. That is, if avariableis
declared uniform or passed to a uniform parameter, the compiler will issue an error if it can't prove
the variable is always position independent.

CLOSED October 22, 2002.

How should resource limits for the shading language be defined?

87 TheOpenGLsShadingLanguage

ISSUES

53)

54)

55)

DISCUSSION: Various proposals have been discussed. One very important consideration isto end
up with a specification that provides application portability (e.g., ISVs do not need to support
multiple rendering back endsin order to run on al the different flavors of hardware). ISV s definitely
would prefer the specification to say that the shading language implementation is responsible for
ensuring that all valid shaders must run.

RESOLUTION: Resources that are easy to count (number of vertex processor uniforms, number of
fragment processor uniforms, number of attributes, number of varying, number of texture units) will
have queriable limits. The application is responsible for working within these externally visible
limits.The shading language implementation is responsible for virtualizing resources that are not easy
to count (number of machine instructions in the final executable, number of temporary registers used
inthe final executable, etc.).

CLOSED on October 29, 2002, as being part of the APl issues list.

How are user clip planes handled if the coordinate spaces are separated by a transform that is non-
linear?

DISCUSSION: The shading language specification relies on the standard definition of GL clipping.
This works as long as the coordinate spaces are only separated by a linear transformation, however
the shading language al so lifts these restrictions.

SUGGESTED RESOLUTION: Adopt the "clip coordinate output" approach found in certain
NVIDIA proposals for ARB_vertex_program (removed long before the spec was final). This
approach provides fully programmable user clipping, hot dependent on any semantics of the program
or any analysis thereof; and it does not leave most cases undefined.

RESOLUTION: Specify that user clip planeswork only under linear transform. It iscurrently
undefined what happens under non-linear transform.

CLOSED October 22, 2002.
How are global pixel operations (e.g., histogram, min/max) supported?
ADDED on September 10, 2002.

DISCUSSION: The current specification allows access only to the fragment at the current location
(though thisis open for discussion as per | ssue (23)). Operationsthat reguire access to other fragment
locations in the frame buffer or on the incoming data stream are expressly prohibited. How will the
shading language provide functionality that supports global pixel operations such as histogram and
min/max?

The desireis to run a program that operates on multiple fragments (similar in spirit to how to run a
vertex program that generates new geometry, Issue (50)).

RESOLUTION: Postponed to afuture version of this specification.

CLOSED: October 22, 2002.

Should the preprocessor have any directive in addition to those already defined?
ADDED on September 10, 2002.

DISCUSSION: A number of preprocessor directives could be added to the language specification, for
instance, #if, #elif, #include, #define token(...) (with arguments), ## (token pasting), #line, #error, #
(by itself), # (to make atoken into a string), defined(token) (and all the other operators, & &, |, +,
etc.), and predefined macros, like DATE__, FILE .

The OpenGL Shading Language 88

56)

57)

58)

59)

ISSUES

In particular, #f would be a useful addition to support processing of versions, dates, and the like. But
this necessitates bringing inthe ||, & &, >, <, ! operators.

RESOLV ED on September 24, 2002: The shading language preprocessor will essentialy have all the
capability of the C preprocessor except that the #include directive is not supported and string-based
directives are also not included.

CLOSED on September 24, 2002.

Isit an error for an implementation to support recursion if the specification says recursion is not
supported?

ADDED on September 10, 2002.

DISCUSSION: Thisissuesisrelated to Issue (22). If we say that recursion (or some other piece of
functionality) is not supported, isit an error for an implementation to support it? Perhaps the
specification should remain silent on these kind of things so that they could be gracefully added later
as an extension or as part of the standard.

RESOLUTION: Languages, in general, have programs that are not well-formed in ways a compiler
cannot detect. Portability isonly ensured for well-formed programs. Detecting recursion is an
example of this. The language will say awell-formed program may not recurse, but compilers are
not forced to detect that recursion may happen.

CLOSED: November 29, 2002.

Should there be a standard way for applications to invoke debug mode?
ADDED on September 10, 2002.

SUBSUMED by Issue (67).

CLOSED on September 24, 2002.

Should the language include a list of reserved words?

ADDED on September 10, 2002.

DISCUSSION: Currently the specification does not contain alist of reserved words. Without such a
list, valid shaders might become invalid when we make additions to the language in the future.

SUGGESTED RESOLUTION: Yes, the language should include alist of reserved words, including
the following: struct, union, enum, typedef, template, goto, switch, default, inline, noinline, long,
short, double, sizeof, volatile, public, static, namespace, using, asm, cast, haf, fixed, and all tokens
that contain two consecutive underscores.

RESOLV ED on September 24, 2002: Yes, the shading language should include a list of reserved
words.

CLOSED on September 24, 2002.
How should function parameters be passed?
ADDED on September 10, 2002.

DISCUSSION: Today the specification says that function parameters are call by reference, no
aliasing is alowed and output is used for output parameters. This has some non-obvious problems:
(A) Uniforms and other globals cannot be passed in as parameters, as that would create an alias. (B)
Varyings and other write-only variables are very tricky to pass by reference, asthere is nothing that

89 TheOpenGLsShadingLanguage

ISSUES

60)

61)

62)

63)

says aparameter iswrite-only. (C) If a shader writesinto a“pass by reference” parameter, it should
either update the caller's argument, or the shader should generate an error because it was not an
output parameter. However, expected usage seemsto be that it's al right to write to a non-output, the
effectisjust local.

The specification could be changed to say that function parameters are call by value-return, which
means the following: (A) A parameter with no qualifier means the parameter is copied in from the
caler at call time. (B) The qualifer output (or out) means the parameter will be copied back to the
caller at return time, but not copied in at call time. (C) The qualifier input output (or inout) means the
parameter is both copied in and copied back.

These semantics solve all the parameter-related aliasing problems. The compiler doesn’t have to
check for aliasing, it can compile as if thereis no aliasing, and it's well-defined to the shader writer
what happensif they pass parametersin away that looks like aliasing. These semantics aso allow for
write-only variables to be passed to a function. Finally, this solution allows writing to a non-output
parameter, while making it clear it's only alocal copy that gets modified.

RESOLVED on September 24, 2002: Change the spec to say that function parameters are call by
value-return as defined above.

CLOSED on September 24, 2002.
How should the built-in names for lighting state be defined?
ADDED on September 11, 2002.

DISCUSSION: The current names for lighting state (gl_Light0..n[8] and the associated predefined
array index values) make it awkward to write aloop to process lights. Thisissueis related to Issue
(49).

RESOLVED on September 24, 2002: Structs should be added to the shading language, and the
lighting state should be redefined as an array of light structs.

CLOSED on September 24, 2002.
Should user-defined functions be allowed to redefine built-in functions?
ADDED on September 13, 2002.

DISCUSSION: It's not clear that there is anything to be gained by allowing this. If users
inadvertently use the same name as a built-in, they will get unexpected behavior or adrop in
performance or both.

RESOLUTION: Yes. Thisisnormal behavior for alanguage and alibrary.
CLOSED on September 10th, 2002.

Should the language include texture gen coefficients for eye/object plane?
ADDED on September 13, 2002.

DISCUSSION: Issueraised by Kent Lin of Intel.

RESOLUTION: Yes, this state should be added.

CLOSED October 22, 2002.

Should the language include a built-in variable for the projection matrix?
ADDED on September 13, 2002.

The OpenGL Shading Language 90

64)

65)

66)

67)

ISSUES

DISCUSSION: Built-in variables are already defined for the model-view matrix and the model-
view-projection matrix. Should a built-in variable be added for the projection matrix as well?

RESOLUTION: Yes, this state should be added.

CLOSED October 22, 2002.

Should built-in variable names be added for the state introduced in OpenGL 1.4?
ADDED on September 13, 2002.

DISCUSSION: The specification is currently written against OpenGL 1.3, therefore it does not
contain the point parameter states and fog coordinate state. Should these be added?

RESOLV ED on September 24, 2002: Yes, we should add built-in variable names for the state
introduced in OpenGL 1.4.

CLOSED on September 24, 2002.
Should mat * mat perform a matrix multiply or a component-by-component multiply?
ADDED on September 16, 2002.

DISCUSSION: Currently the specification states that the “*” operator will cause a component-by-
component multiplication if two matrices are specified. The multiply operator (*) does the expected
linear algebra operations for scalar * scalar, scalar * vector, and matrix * vector but not for matrix *
matrix where it is component-wise instead, which is a comparitively rare operation. Thiswas done
for consistency with other operators that behave component-wise. (E.g., we probably do not want
matrix / matrix to be real matrix division instead of component-wise. Should matrix * matrix be
changed to indicate a matrix multiplication operation?

RESOLUTION: The specification should be modified to indicate that the “*” operator will cause a
matrix multiply if the two operands are matrices.

CLOSED October 22, 2002.
What should the specification say about the length of time a shader is allowed to run?
ADDED on September 16, 2002.

DISCUSSION: Earlier versions of the white paper talked about a watchdog timer. Is such a thing
necessary as part of the language specification?

RESOLUTION: Thelanguage specification should not say anything about the length of time a shader
isallowed to run. Timeouts, interactivity, and detecting malicious shaders are implementation and/or
operating environment details.It probably should be somewherein the GL 2 extension specification(s)
that an executing shader is terminated if the application that caused execution of that shader is
terminated.

CLOSED October 22, 2002.
Should there be a standardized way to specify debugging and optimization levels?
ADDED on September 16, 2002.

DISCUSSION: Four alternatives are possible. (A) We don't debug, and we always optimize, so there
is no problem. (B) We add debug and optimize parameters to the entry points for compiling and
linking. (C) We use #pragma to specify debug and optimization levels, and outline basic portable
meanings. (D) We say thisis entirely platform dependent, and don't specify anything.

91 TheOpenGLsShadingLanguage

ISSUES

68)

(A) seems short-sighted because turning optimization on/off is a technique and work-around for
tracking down some kinds of defects, we will eventually want to debug shaders, and there will be
compile-time vs. run-time trade-offs (e.g. if an application isdynamically generating shaders that
have really short life-times, it may be faster to turn off slower optimizations).

(B) seems a bit awkward asthere will be platform dependent aspects to these activities. (D) seemsto
be going to far for something that's going to, in principle, exist on &l platforms.

RESOLUTION: Use #pragma to specify debug and optimization levels and outline basic portable
meanings.

CLOSED October 22, 2002.

Should the language support explicit data types such as 'half’ (16-bit floats) and fixed' (fixed
precision clamped data type)?

ADDED on September 17, 2002.

It iscommon for high level languages to support multiple numeric datatypes, to allow programmers
to choose the appropriate balance between performance and precision. For example, the C language

supports the float and double data types, aswell as avariety of integer data types. This same genera

consideration applies for a shading language.

For shading computations, precisions much lower than 32-bit floating point are often adequate. Until
recently, most graphics hardware performed all shading computationsin 9 or 10 bit fixed-point
arithmetic. Lower-precision data types can beimplemented with higher performance, especialy
when the data must travel off chip (e.g. texture data). For thisreason, it is desirable to provide access
to data types with precision of less than 32 bits in a hardware shading language.

Issue (33) discusses precision hints. Precision hints are less useful than additional data types,
because precision hints do not allow function overloading by precision. Developersfind it very
convenient and useful to be able to have functions with same names and argument lists with different
precision data types.

It isalso important to be able to specify datatype per variable (as opposed to per-shader), because it
is common for some computations (e.g. texture-coordinate computations) to require higher precision
than others.

On the other hand, thereis adesire to ensure that shaders are portable between different
implementations. In order to achieve portability, implementations that don’t have native support for
half will be penalized because they will have to clamp intermediate calculations to the appropriate
precision. If these additional datatypes are hintsthat the compiler can choose to do the calculations to
lower precision then this|eaves the ISV open to unintended clamping or overflow semantics so
different architectures can give very different results. The hint also implies that there is awell
specified way to convert to between types under the hood so function overload resolution gets more
complicated and additional rules are needed to resolve ambiguities, unlessall legal combinations of
functions must be supplied. Specifying all legal combinations requires adding quite alarge number
of additional function types (dot product will need {float, half, fixed} * {float, half, fixed} * number
components or 36 versions (vs 4 with only float).

If the additional datatypes are real typesthen what can they be applied to? If it isto uniformsand
attributes then the different sizes now reflect in the API, but half and fixed have no native support in
C. If ahalf isfollowed by afloat doesthis mean afloat has to start on a 16 bit boundary? What about

The OpenGL Shading Language 92

69)

70)

71)

ISSUES

packing of fixed - the true size isundefined. If half and fixed are just restricted to temporaries then
this makes things easier but now the storage efficiency benefit islost.

The OpenGL spec currently says* The maximum representable magnitude of afloating-point number
used to represent positional or normal coordinates must be at least 232.” Should we introduce
something that runs counter to this? s10e5 precision isinadequate for texture coordinates even for a
1k by 1k texture. It seemsthat half-floats open a door for precision issues to propogate throughout a
shader.

RESOLUTION: Performance/space/precision hints and types will not be provided as a standard part
of the language, but reserved words for doing so will be.

CLOSED: November 26, 2002.
Should the fragment shader be able to access a varying variable that provides the position?
ADDED on September 17, 2002.

DISCUSSION: Window position can be very useful in certain fragment shaders. For example, it can
be used to implement stipple patterns using fragment shaders.

RESOLUTION: The window position is part of the built-in variable gl_FragCoord that is available
within the fragment processor. The specification should be modified to make it clear that the x and 'y
values of this variable define the window position of the fragment.

CLOSED October 22, 2002.

Should the language support boolean vectors (e.g. bool 2, bool3, bool4), and corresponding vector
operators?

ADDED on September 17, 2002.

DISCUSSION: The language supports short float vectors (e.g. vec2, vec3, vecd), so it would be
consistent to support boolean vectors as well. If the language includes support for boolean vectors
and operations, it is simple to express el ementwise vector computations. For example, the min and
max vector operations can be elegantly implemented within the language using bool-vector
operations.

When a comparison operator such as'<' is applied to vector operands, the result is a boolean vector
that contains the result of the elementwise comparison. The'?2' construct operates in elementwise
fashion if the first operand is a boolean vector. if, while, and for still require ascalar boolean value

RESOLUTION: Vectors of bool will be added. But C-like short-circuit evaluation of & & and || will
be kept. For thisrelease, if and 2 will select based only on scalar bools. Since == and != should also
return ascalar bool (asthey do for al types, including struct), they will do so, and not return a vector
of bool when vectors are compared. Hence, <, >, <=, and >= also will not create vector of bool.
They will not legally operate on vectors. Rather, built-in functions will be added for relational
operations on vectors.

CLOSED: November 5, 2002.

Should the shading language support compound data structures such as arrays of arrays, structs of
arrays, arrays of structs, etc.?

ADDED on September 17, 2002.

DISCUSSION: The ability to create compound user-defined data structuresis a fundamental part of
almost all high-level programming languages. Omitting support for these capabilities would be

93 TheOpenGLsShadingLanguage

ISSUES

72)

73)

74)

75)

inconsistent with the generally forward-looking nature of the OpenGL shading language design
effort.

On the other hand, as with the issue of adding structs (Issue (49)), a case can be made for every
language that it will be useful to someone, somewhere, sometime. |sit worth taking the time and
effort to ensure that this functionality is part of the first version of the specification? Will it cause any
problems to defer it and add it later?

RESOLVED on September 24, 2002: Yes, the shading language should support arrays of arrays,
structs of arrays, arrays of structs, etc.

CLOSED on September 24, 2002.
Should the shading language include a switch statement?
ADDED on September 19, 2002.

DISCUSSION: The C language switch statement is a useful construct in writing clean code. The
alternative is to use aless readable collection of if statements.

RESOLUTION: Switch will not be added for initial release. Thereis desire to manage floating point
ranges, which would take along time to work out.

CLOSED on October 1, 2002.
What are the semantics of the keyword return in the main() function?
ADDED on September 19, 2002.

DISCUSSION: Currently the specification does not say what happens if the keyword returnis
included in the main() function in any place other than the very end of the function.

RESOLUTION: return means exit main, just like getting to the end. It does not mean kill.
CLOSED on October 1, 2002.

How is data computed by the vertex or fragment shader communicated back to the application?
ADDED on September 24, 2002.

DISCUSSION: Thisissue isrelated to Issue (50) and Issue (54). If either the vertex processor or the
fragment processor are allowed to compute results that don’t continue down the processing pipeline

(e.g., histogram, min/max, or computing vertex array datafrom control points), how will those results
be communicated back to the application?

RESOLUTION: Postponed to a future version of the specification.

CLOSED: October 22, 2002.

Should uniforms and attributes which are initialized by the application allowed to be structs?
ADDED on September 25, 2002.

DISCUSSION: If we don't allow this, the application has to pass all data viaindividual global
variables, and shader code must pack the data together in structs in order to use structs. This causes
ugly unnecessary shader code. On the other hand, initializing struct data should not involve a
complexification of the API.

Also, it seems broken to have structs in the language, but not have away to initialize them from the
application. On the other hand, a complete solution for initializing structs seems beyond this release.

The OpenGL Shading Language 94

76)

ISSUES

It's also been noted that attributes can be matrices, but thereisno API for initiaizing them.
RESOLUTION:

* Add entry pointsto initialize an attribute matrix. At bind time, a 4x4 matrix takes 4 consecutive
locations, a 3x3 matrix takes 3 consecutive locations, and a2x2 matrix takes 2 consecutivelocations.
Details of layout are hidden. If an implementation only needs one slot for a2x2, it only hasto use
one slot, but the room is there for implementations that need two.

* Don't yet support arrays of attributes and structs of attributes.
* Allow uniform struct and array of struct.

* Support AP initialization of struct members by specifying a string at GetUniformL ocation time
that selects the member to beinitialized. E.g. "struct.member", "struct[4].member",
"struct[2].member[2]" etc.

* Don't yet support struct-level initialization in the API, wait for future full solution that
understands strides, alignments, padding, etc.

CLOSED October 22, 2002.
Should vec2, vec3, vec4, mat2, mat3 and mat4 be defined as structures?
ADDED on September 26, 2002

DISCUSSION: Treating these types as structsis that the language would get much clearer and would
be easier to specifiy. This aso will simplify compiler development.

Currently, these types are involved in special language features like"v.xyz" syntax and swizzling
operations like "v.yzx". However, such operations are not neccessary in aHLSL .For example,
swizzling operations are typical for assembly language tricks, for example to express a cross product
with two assembly commands. But such tricks are not necessary in a HLSL, you simply use build-in
functions, or define user-defined functionsif really needed.Furthermore, in the rare cases where such
operations are really needed they can be easily expressed by standard language featureslike vec3(v.y,
V.Z, V.X).

Furthermore, a syntax like v[i][] is planned to be added as special language feature.But situations
where you need dynamic indices for componentsare quite rare and can be easily expressed by buildin
access functions.

Another aspect is having different names for identical components,for example xyzw versus rgba.
L oosing this feature is probably thisisthe only real disadvantage of treating vec3 and vec4 as normal
struct.On the other hand, having unique names xyzw aso may clarify shader programs.

On the other hand, the vector and matrix type are indeed specia: (A) Most operators work on them.
Not so for struct. (B) Every element of avector or matrix is the same type. Not so for struct. (C) A
matrix is conceptually two-dimensional, while structs are conceptually one-dimensional. The current
language isn't perfect at keeping a matrix 2D, given we have to sometimes know its column major
order, but it can be treated as 2D sometimes. (D) Hardware may have specia hardware for vector and
matrix types that are more difficult to map to generic structs than to built-in types.

RESOLUTION: vectors and matrices are not structures, but some changes will be made. Summary:

* R-value swizzling becomes an operation on an expression. Thisis a change from the initial spec
saying it was a member selector on avector variable.

* We remove the empty-brackets syntax.

95 TheOpenGLsShadingLanguage

ISSUES

77)

78)

79)

80)

81)

* We keep the swizzling syntax we already have for vectors.
* We keep the array access syntax for vectors.
* We add, for matrix m, that m[i] is the ith column and is vector type. Both |-value and r-value.

* Because m[i] isavector, and vectors have array syntax, then it just falls out that m[i][j] istheith
column, jth row of m.

CLOSED on October 8, 2002.
Should the type of gl_FragSencil and gl_FBSencil be changed to int?

These are currently floats. The integer type has progressed in the language, so this should be
reconsidered.

RESOLUTION: Yes. However, stencil writing has been deferred to afuture release, and frame buffer
reading has been removed.

CLOSED on December 10th, 2002.

Are stencils automatically clamped to the current min and max values that can be stored in the stencil
buffer?

RESOLUTION: Yes. However, stencil writing has been deferred to a future release.
CLOSED on December 10th, 2002.

Do we need to have near and far clipping planes available to the fragment shader.
DISCUSSION: ARB_fragment_program has these.

RESOLUTION: Yes.

CLOSED on December 10th, 2002.

Rectangular (non-power of 2) textures aren’t indexed by 0.0 to 1.0, but rather by their actual
dimensions. Isthisa problem?

DISCUSSION: Yesthisis aproblem. Some hardware needs to know at compile time what kind of
texture is being accessed. We want to avoid having to recompile shaders due to state changes. More
texture built-in names could be used, so it isknown at compile time what kind of textureis being
accessed. Something like textureRect3 to mean arectangular texture returning 3 components. It is
also the case that rectangular textures are not a part of OpenGL 1.4, so these functions could be added
as an extension, and not be part of thisrelease of the language specification.

RESOLUTION: Makeroom for adding more functions to support other texture types, but defer
doing thisfor rectagular textures until they have become part of core OpenGL.

CLOSED on December 17th, 2002.

Should we support a way of accessing fixed functionality fog from a shader, to take advantage of
possible fog that may exist in fixed functionality hardware?

DISCUSSION: This sounds similar to supporting a fixed functionality transform, which we do.
However, that was done out of need for invariance, which is not an issue with fog. It isalso provided
in ARB_fragment_program, but the spirit of this spec isto replace fixed functionality and extraways
of accessing it with programmability.

RESOLUTION: No special support of afixed pipeline fog access will be provided.

The OpenGL Shading Language 96

ISSUES

CLOSED on December 17th, 2002.
82) Isit really necessary to require writing of gl_Position, gl_FragColor or gl_FragDepth?

DISCUSSION: Thiscan be difficult to handle error cases for when the writes are conditional. There
was a so discussion that either Kill should be called, or agl_ output be written in afragment shader.
However, that isirrelevant, asit’s okay to neither kill nor write any outputsin afragment shader. For
the vertex shader, it still makes no sense to not write a position, so this should still be required.

RESOLUTION: For the fragment shader, there are no rules; either kill can be called or not, and if
not, nothing need be written to, existing values are picked up from the pipeline. For the vertex
shader, gl_Position should still be written, with the compiler giving a diagnostic when possible.

CLOSED on December 10th, 2002.

REOPENED on January 7, 2003, on concern of performance impact of writing default gl_FragColor
and gl_FragDepth when a compiler thinks they are conditionally written. For color, it should just be
undefined to not write gl_FragColor. For depth, it is more complex, asif depth isnot written, then
the fixed functionality computed depth should be used. However, if depth is conditionally written,
the compiler will always have to initialize depth, which is a possible performance hit. Further
discussion of this generated alternatives of aways having to write gl_FragColor from a shader, or
more complex things based on what the source code looks like.

RESOLUTION: Say that if ashader conditionally writes gl_FragDepth, then it must always writeiit.
See issue 95 for invariance concerns.

CLOSED January 17, 2003.
83) What should we do for modifying stencil? Does this effect push/pop state?

DISCUSSION: Writing a stencil value in afragment shader introduces new functionality to
OpenGL. By itsdlf, it isof questionable use. On the other hand, existing operations like increment
and decrement of stencil aren’t obviously expressible with the current specification. It may be that
stencils should only be updated when a fragment shaders writes no outputs and the API has been set
up for rendering to stencil. But, this has not been thoroughly investigated.

RESOLUTION: Stencil modifications are deferred to a future release.
CLOSED: December 17, 2002.
84) Should we add projective texture lookup? What about SHADOW textures?

DISCUSSION: Projective texture lookup could be postponed. Shadow textures are part of 1.4, so
should be added, using something like textureShadow*. However, if adding these, it'strivia to also
add projective lookup at the same time. What if shadow modes are not enabled? Expectation isthe
model looks like hardware just does whatever it's set up to do by the application, and a shadow call
from a shader picks up what was thus specified. Separately named functions will be used, because
more data isinput for the same target than for non-shadow lookups. Shadow could be called
“compare” instead of “shadow”, but renderman calls it “ shadow”.

RESOLUTION: Add projective and shadow textures, with new names proj and shadow reflecting
this. Furthermore, projective textures will accept two sizes of input: all will take avec4, plus a 2D
projective will takeavec3, etc. Also ensure spec saysresults are undefined if using a shadow built-in
on atexture not set up with a comparator, or using a non-shadow built-on on a texture set up with a
comparator.

97 TheOpenGLsShadingLanguage

ISSUES

85)

86)

87)

88)

89)

CLOSED January 17th, 2003.

How doesthe compiler know if it'sa 1D, 2D, 3D or CUBE texture that’s being accessed? Basing this
on the number of components of an argument iserror prone.

DISCUSSION: Which texture to use was based on the type of the lookup coordinate argument.
However, it's conceivable to support having many textures bound to the same texture unit number,
and when the shader iswritten, the author should have in mind which one they are accessing, and
they shouldn’t get the wrong one due to getting atype wrong. Explicitly saying which textue could
be done with enums passed to the existing texture calls, or by adding new names with the texture type
in the name. The problem with using enums is that implies an argument a variable could be passed
into, while the requirement was to know at compile time. This argues for a name change.

RESOLUTION: Add more texture names so that it is explicit at compile time what kind of texture
lookup is being done. Something like texturelD3, texture2D3, texture3D3, and textureCube3,
where the last number is the number of components returned (could be 1, 2, 3, or 4).

CLOSED: December 17th, 2002.
Thereislittle mention of color index in the spec. What support is provided for it?

DISCUSSION: Other extensions (ARB_vertex_program, ARB_fragment_program, texture
application) say operations are undefined if rendering in COLOR INDEX mode.

RESOLUTION: Remove references to this other than saying COLOR INDEX operations are
undefined.

CLOSED: December 10th, 2002.

Aux data buffers were part of the OGL2 white papers, but this specification needs to stand on the
current OGL core.

RESOLUTION: Remove aux data buffers from the specification. They can be added back if/when a
future extension provides other buffersin core GL to write to.

CLOSED: December 17th, 2002.
Variable array indexes of some arrays may be difficult to implement.

DISCUSSION: Arrays could be limited to just uniforms. However, thisisrestrictive, other graphics
languages had locdl variable arrays. It aso lacks orthogonality with structs that contain arrays, but
may be used asauniform or alocal. It may help to limit the indexes of hon-uniform arrays to be
uniform indexes. It seems unlikely that a shader would initialize a whole non-uniform array and then
index it with non-uniform indexes. (It seems much more likely that a non-uniform index would be
applied to astatic array or texture.) On the other hand, since thisis unlikely, the language spec. could
be left clean and full functionality, and for the next year or two it's okay for compilersto complain
that something istoo complex (given that it's an unlikely need).

RESOLUTION: Full array support will be specified.
CLOSED: January 7, 2003.
Why aren't the varyings gl_TexCoordO...gl_TexCoordn an array?

DISCUSSION: There may be some performance or compiler convenience to knowing these at
compile time or not allowing a variable index. This could interact with issue 88, where if indicesto
varying arrays must be uniform then it's easier to support these as arrays.

The OpenGL Shading Language 98

90)

91)

92)

ISSUES

RESOLUTION: These will be changed to arrays. Working on details for the 2 problems listed
above.

CLOSED: January 7, 2003.

REOPENED: Issue 88 was resolved with full array support. However, that leaves two possible
issues with texture coords. i) not being able to tell how many coords are actually active in a shader,
and ii) not being able to tell at compile time which coords are being accessed.

DISCUSSION: Alternatives:
1. Cg says something like this for constant loop-iteration:

"Can be determined at compile time" is defined as follows: The loop-iteration expressions can be
evaluated at compile time by use of intra-procedural constant propagation and folding, where the
variables through which constant values are propagated do not appear as lvalues within any kind of
control statement (if, for, or while) or ?: construct.

2. Beredlly restrictive: it must be acompile time constant or an induction variable with compile time
constant start/end/increment values.

3. Actualy solvethe fundamental resource size problem: make the shader writer re-declarethe array
if they violate #2. Thatis, alow "varying gl_TexCoord[N]" to be declared by the shader, where N is
how many coordinates they want to use and require it if #2 isn't satisfied. Allow full variable access
in the language (with early hardware/compilers warning when it gets to tough.)

4. Do #3 with a#pragmainstead.

5. Variation: Either dl indicesto gl_TexCoord[] in a shader must be constant expressions, or the
shader must declare gl_TexCoord[] with asize. The built-in should be declared as an empty array so
it's consistent with C to declare it again with asize. Multiple modules can declare it with different
sizes, the maximum will be used at link time.

RESOLUTION: Use#5.
CLOSED: January 24, 2003.

The built-ins specify texture functions that return integers. However, such textures are not in core
OpenGL.

RESOLUTION: These built-in functions will be removed. They can be added back as part of a
future specification that addsinteger texturesto OpenGL.

CLOSED: December 17th, 2002.

There seems to be missing fog information in the fragment shader. gl_EyeZ is not enough. Should
there be some derived information?

RESOLUTION: Expand float gl_EyeZ to vec4 gl_FogFragCoord.
CLOSED: December 17th, 2002.
e need a way to get object code back, just like the model of C on host processors.

DISCUSSION: Lotsinemail. Thisis about lowest-level, machine specific code that may not even
be portable within afamily of cards from the same vendor. One main goal isto save compilation
time. There seemsto be general consensus that this has merit, but does not effect the language
definition.

99 TheOpenGLsShadingLanguage

ISSUES

93)

94)

95)

RESOLUTION: Thisisan API issue, not alanguage issue.
CLOSED on December 19, 2002 as being an APl issue.

In reality, the output varying interface from a vertex shader is different than the input varying
interface to a fragment shader, but this spec shares a single interface. This causes trouble with fog
and lacks compatibility with mix & match of fixed functionality and ARB_fragment_program

DISCUSSION: Splitting this interface in two makes sense. The fragment input should be
compatible with ARB_fragment_program and the vertex output should be compatible with
ARB_vertex_program. Fog can be dealt with this way, as reflected in the specification.

RESOLUTION: This should be done.
CLOSED January 17, 2003.

The way the language spec. istoday, it is not possible to know at compile time which targets are used
on which units. If one believes hardware must be set up in advance with the right target on the right
unit, thisis a big problem.

DISCUSSION: Possible solutions:

A. Usetraditional OGL enables and binds and precedence to allow the app to communicate which
target is the one that needs to be active when the shader runs.

B. Change the language to reguire compile-time inspection to be sufficient to see which target is
being used on which unit.

C. Expect hardware to be able to dynamically access the requested target without having been set up
in advance by the driver to do so.

D. Add anew entry point to the API for setting an active texture: a) BindTextureGL2(GLenum
textureUnit, GLenum GLuint texture) (maybe without textureUnit parameter) But it seems that
nobody wants such a function because of incompatibility to the standard pipeline. b) Another option
may be a new utility function UseTexture(GL enum textureUnit, GL enum GLuint texture), which is
completely equivalent to i) binding the texture, ii) enabling the target of this texture and iii) disabling
all other targets. If textureisNULL, all targets are disabled. This solution would be 100% compatible
to the standard pipeline; the new function is only for convinience, providing no new functionality
(maybe as glu function).

E. Use ‘samplers’ the way Cg does.

RESOLUTION: Usesamplers. Typessampler 1D, sampler2D, sampler 3D, and sampler Cube will
be added. They will not be writable in a shader. They can only be global uniforms. They can be
arrays. They are opaque and cannot be operated on within a shader, only referenced. The first
parameter of texture callswill accept them. The APl must somehow bind texture or texture/unit to
them. Enables, active-texture, etc. are superceded by these API bindings. At the language level, they
will provide the basis for possible future virtualization of textures.

Also seeissue 97.
CLOSED January 17th, 2003.

Arethere needsto solve invariance problems with gl_FragDepth or other aspects of the shading
language?

DISCUSSION: Some have raised concerns here, but it's not clear what the problems/solutions are.

The OpenGL Shading Language 100

ISSUES

RESOLUTION: For gl_FragDepth, say that there is no guarantee of invariance between a fixed
functionality depth and a shader computed depth. However, using the same shader depth
computation multiple times in the same or different shaders will be invariant.

Defer other variance issues to the next release.
CLOSED January 17th, 2003.
96) Thelod built-in doesn’t make sense for anisotropic filtering.

DISCUSSION: Seemslike we need lod1D, lod2D, lod3D, lodCube. But, the lod() built-in doesn't
seem useful, given that the texture built-ins currently take biases, not absolute lod's. And aso given
that if anisotropic filtering were added, lod's specification would be troublesome.

RESOLUTION: Removelod built-ins.
CLOSED January 17th, 2003.
97) Do we need a shadow sampler? E.g. a type sampler 1D Shadow, sampler2DShadow?

DISCUSSION: This gives even higher level of enforcement over hooking up theright texture state
with the right built-in lookup function. On the other hand, it sets a direction for adding lots of type
keywords.

RESOLUTION: Yes, add these types.
CLOSED January 24, 2003.

98) vec?, vec3, vecd should be changed to float2, float3, float4 to be consistent with other languages. kill
should likewise be discard.

DISCUSSION: Should replace vec2, vec3, vecd with float2, float3, float4 to match the established
conventions of the Stanford RSL, Cg, and HLSL.

Additionaly, these names allow better support for data types based on other scalars (int2, int3, int4,
half2, half3, double4, etc).

On the other hand, it seems consistent to have a scheme where a vector is made with a prefix type
abbreviation (default isfloat), followed by "vec", followed by number of components.

type vector of 4

float vecd
int ivecd
bool bvec4
half hvec4
double dvec4
float16 f16vecd
int32 i32vecd

Should we also change "kill" to "discard"? Therationaleis that the OpenGL specification
consistently uses the term "discard" when afragment is discarded and never useskill. The KIL
instruction does appear in both the ARB_fragment_program & NV _fragment_program specifications
(probably because it makes a nice mnemonic for a three-letter instruction), but that's not consi stent
really with a core OpenGL specification. Another reason isthat Cg/HLSL has "discard" be a
keyword and there's no good reason to have redundant keywords for the same functionality.

RESOLUTION: Change kill to discard, leave vectors the way they are.

101 TheOpenGLShadingLanguage

ISSUES

99)

CLOSED January 24, 2003.
Thereis a mechanism lacking for dealing with a really large table in memory.

DISCUSSION: Want to be able to efficiently communicate alarge array of information to a vertex
shader to support advanced animation techniques. This can be donetoday for arrays that fit into the
“uniform” space, but not for really large data structures. Need away to declare these in the language,
and need API support to initialize them. It can be argued that this functionality is mostly present
through texture lookups. However, that doesn’'t seem like the proper abstraction for alarge array in
memory.

RESOLUTION: Defer thisto afuture release. Include a specification as part of thisissue.
CLOSED January 24, 2003

100) We have a name conflict with texture built-insif in the future lod-bias forms are added to the vertex

shader, or (more likely) absolute-lod forms are added to the fragment shader.

RESOLUTION: Call bias forms the names we have now. Call absolute-lod forms the nameswe
have now, suffixed with “Lod”.

CLOSED January 24, 2003.

101) Add initialization of uniforms. For example, uniform vec3 Color = vec3(1.0, 1.0, 0.0);

DISCUSSION: Has been requested by 1SVsand NVIDIA. Doesn't seem necessary, but if majority
wants this we can add it. Also need to consider doing this for samplers (but not for arrays?). Notein
only makes sense for uniforms that are not changing during rendering, const globals are available,
and textures cannot be specified, so this may be of less utility than some think. Still it hasvalue.

RESOLUTION: Do nothing. Save backward compatible enhancements for a future version of the
language.

CLOSED: December 2003.

102) Fix arrays (multi-dimensional arrays, static initialization of array members, variable sized arrays,

non-sized array parameters).

DISCUSSION: The function parameter declaration "vec4| |" does not say how big the array is,
somewhat implying pass by reference. The calling conventions are pass by value. This syntax
should be reserved for a possible future addition of passing an array by reference. To passan array by
value, one should say the size "vec4[5]". Unfortunately, thiswould prevent calling the same function
with two differently sized arrays. But, then, perhaps, doing that should wait until there is a pass by
reference mechanism for arrays. Static initialization could be done by using the constructor name of
type followed by square brackets. E.g. "vecd[5] vArray = vecd[1(v1, v2, v3, v4, v5);"

Once on this path, one could go further to making arraysfirst class objects. It could argue for
declarations like "float[7] fArray", and alowing copying and comparing of arrays. Thisalso implies
eliminating auto-sizing of arrays, which is has other utility in making it easy to conserveinterpolation
resources. Going even further, multidimensional arrays could be added, and we'd have to consider
arrays of arrays, typedefs, and true multidimensional arrays like "float[7,3] fMultiArray".

RESOLUTION: Be conservative with changes, but don't preclude backward compatibility of future
additions of al thisfunctionality. The minimal changesthat allow future backward compatibility are:
make function parameter declarations require the array size and make it alink error to have different
shaders with different sizes for the same global array. Thisallows usto keep the existing auto-sizing

The OpenGL Shading Language 102

ISSUES

of gl_TexCoord. Array sizes have to match for afunction call to be selected based on parameter
types, otherwise there would be a"no matching overloaded function” error. Therest isdeferredto a
future release.

CLOSED: December 2003.

103) Clarify specification on vector matrix constructorsinitialized with fewer than needed elements. Do
you drop last row/column or initialize elementsin order? Userswould expect the former. Also, limit
constructors and make them operate in a more sensible manner.

DISCUSSION: The spec says enough components have to be provided. There are missing
interesting constructors for building matrices in other than column major order. Thereisaso no
upper bound today on how many parameters may be passed to a constructor in avalid program. We
could also enumerate all the useful constructors, and say exactly what each one does. Also, thereis
some blurring between the use of a constructor as a type converter versus atype builder. Thiswould
be made more clear with aclean list of prototypes. The complete list was avoided earlier in favor of
asimpler specification.

RESOLUTION: Limit the number of arguments to a constructor. The last useful argument can have
more components than needed, and just be partially consumed, but arguments beyond that are
disallowed. Also, prevent other constructionsthat are today useless, but in the future could be
defined to be useful. Thesewould be matrices constructed from other different sized matrices. E.g.
mat4(mat3) or mat2(mat4). Actua support of new kinds of constructorsis deferred to a future
release.

CLOSED December 2003.
104) Should there be a fast atan() etc?

DISCUSSION: Two different directionsto go. Oneis adding a performance vs. accuracy trade-off.
The other isto add domain limited functions. Both could be supported, with new sets of names. Eg.

atanDom() would be adomain limited arc tangent.

atanFast() would be alower precision, higher performance arc tangent.
RESOLUTION: Do it asan extension first.
CLOSED December 2003.

105) Change spec so that code can be generated by concatenation of all shader strings across shader
objects.

DISCUSSION: Thereis some utility in just waiting to link time to do full compilation and link in
one step. One way to do thisis to concatenate all the shaders together (within vertex or within
fragment, not across), and parse them. They still have to be parsed at compile time, to return errors,
etc., but would be parsed a second time at link time.

RESOLUTION: Not to dothis. It iseasy to make a specification error in making this change.
CLOSED December 2003.

103 TheOpenGLShadingLanguage

ACKNOWLEDGEMENTS

11 ACKNOWLEDGEMENTS

If I have seen further it is by standing on ye shoulders of Giants —|saac Newton

The vast mgjority of the ideas and elements in the proposed language can be found in the computer
science and computer graphics literature. Dave Baldwin of 3Dlabs wrote the white paper that formed the
basis for the OpenGL Shading L anguage. His original credits included the following:

» AT&T for the C language,

* Pixar for RenderMan,

* UNC for Pixel Flow language and their programmable OpenGL interface,

» Stanford for their shading language work,

» SGI for OpenGL (obviously) and their shading language research,

» Colleagues at 3Dlabs for the frequent active discussions that helped to clarify many points

Dave Baldwin has continued to be involved in the design of the shading language as it has devel oped.
Randi Rost and John Kessenich edited several public versions of the shading language white paper and
created thefirst version of this specification document. Antonio Tejada of 3Dlabs wrote the first parser for
the language to help resolve some of the fundamental language design issues.

Randi Rost, John Kessenich, Barthold Lichtenbelt, and Steve Koren of 3Dlabs formed the team that took
over the design and implementation of the OpenGL Shading L anguage once the initia direction had been
established. This group has been responsible for producing the publicly avail able specifications and

source code for the OpenGL Shading L anguage, for producing the initial implementation of the language
compiler and supporting OpenGL extensions, and for modifying the design of the language along the way.

Dave Baldwin, Dale Kirkland, Jeremy Morris, Phil Huxley, and Antonio Tejada of 3Dlabs have been
involved in many of the OpenGL Shading Language discussions and have provided a wealth of good
ideas and encouragement as we have moved forward. Other members of the 3Dlabs driver development
teams in Egham, U K., Huntsville, AL, and Austin, TX have contributed as well. The 3Dlabs executive
staff should be commended for having the vision to move forward with the OpenGL Shading Language
proposal and the courage to allocate resources to its development. Thanksto Osman Kent, Neil Trevett,
Jerry Peterson, and John Schimpf in particular.

Numerous other peopl e have been involved in the OpenGL Shading Language discussions. Wewould like
to thank our colleagues and fellow ARB representatives at ATI, SGI, NVIDIA, Intel, Microsoft, Evans &
Sutherland, IBM, Sun, Apple, Imagination Technologies, Dell, Compag, and HP for contributing to
discussions and for hel ping to move the process aong. In particular, Bill Licea-Kane and Evan Hart of
ATI Research have helped to improve the specification and the language itself through insightful review
and studious comments.

The OpenGL Shading Language 104

ACKNOWLEDGEMENTS

A big thank you goesto the software developers who have taken the timeto talk with us, send us email, or
answer survey questions on OpenGL .org. Our ultimate aim is to provide you with the best possible API
for doing graphics application devel opment, and the time that you have spent telling uswhat you need has
been invaluable. A few ISV slaobbied long and hard for certain features, and they were able to convince us
to make some significant changes to the original OpenGL 2.0 proposal. Thanks, all you software
developers, and keep telling us what you need!

Others that have provided useful comments or review on the shading language include Christian L aforte
and lan Ameline of Alias|Wavefront; Jonathan Putsman of Imagination Technologies; Darren Roberts
and Slawek Kilanowski of LightWork Design; John Carmack of ID software; Tim Sweeney and Daniel
Vogel of Epic Games; Bert Freudenberg of the University of Magdeburg; Folker Schamel of Spinor;
Karel Zuiderveld and Steve Demlow of Vital Images; Christoph Poliwoda, Christof Reinhart, and
Wolfgang Roemer of Volume Graphics; Christian Schormann of Pinnacle; Jake Kolb V of Whatif
Productions; Mik Wells of Softimage; Delwyn Holroyd and Gerk Huisma of 5D Solutions; Kurt Akeley,
Pat Hanrahan, and Bill Mark from Stanford University; and John Stauffer of Apple.

People that have helped shape the direction of shader objects and program objects include Christian
Laforte of Alias|Wavefront; Pierre Tremblay of Discreet; Bimal Poddar of Intel; Jon Paul Schelter of
Matrox; Jonathan Putsman of Imagination Technologies; Mik Wells of Softimage; Karel Zuiderveld and
Steve Demlow of Vital Images; and Tim Sweeney and Daniel Vogel of Epic Games.

This specification document was formally submitted to the OpenGL Architecture Review Board’'s GL2
working group in June, 2002. That group was responsible for identifying issues, resolving issues, and
finalizing the specification for approval by the OpenGL Architecture Review Board. The following GL2
working group members contributed to the finalization of this specification:. Dave Baldwin, John
Kessenich, Steve Koren, Barthold Lichtenbelt, and Randi Rost from 3Dlabs, Inc.; Evan Hart, Bill Licea-
Kane (chairman of the ARB-GL2 working group), and Victor Vedovato from ATI Research, Inc.; Dave
Zenz of Dell; Brandon Fiflet and Kent Lin of Intel; Pat Brown, Matt Craighead, Cass Everett, Steve
Glanville, Jayant Kolhe, and Nick Triantosfrom NVIDIA; Jon Leech from SGI; Folker Schamel of
Spinor; Brian Paul from Tungsten Graphics; Eskil Steenburg from Quel solaar; Marc Olano from the
University of Maryland, Baltimore County; Michael McCool from the University of Waterloo; and Matt
Cruikshank, Steve Demlow, and Karel Zuiderveld from Vita Images.

Finally, adebt of gratitude is owed to the designers of the C programming language, the designers of
RenderMan, and the designers of OpenGL, the three standards that have provided the strongest influence
on our efforts. Hopefully, the OpenGL Shading Language will continue their traditions of success and
excellence.

105 TheOpenGLShadingLanguage

ACKNOWLEDGEMENTS

The OpenGL Shading Language 106

	The OpenGL® Shading Language
	1 Introduction
	1.1 Changes since version 1.051
	1.2 Overview
	1.3 Motivation
	1.4 Design Considerations
	1.5 Error Handling
	1.6 Typographical Conventions

	2 Overview of OpenGL Shading
	2.1 Vertex Processor
	2.2 Fragment Processor

	3 Basics
	3.1 Character Set
	3.2 Source Strings
	3.3 Preprocessor
	3.4 Comments
	3.5 Tokens
	3.6 Keywords
	3.7 Identifiers

	4 Variables and Types
	4.1 Basic Types
	4.1.1 Void
	4.1.2 Booleans
	4.1.3 Integers
	4.1.4 Floats
	4.1.5 Vectors
	4.1.6 Matrices
	4.1.7 Samplers
	4.1.8 Structures
	4.1.9 Arrays

	4.2 Scoping
	4.3 Type Qualifiers
	4.3.1 Default Qualifiers
	4.3.2 Const
	4.3.3 Integral Constant Expressions
	4.3.4 Attribute
	4.3.5 Uniform
	4.3.6 Varying

	5 Operators and Expressions
	5.1 Operators
	5.2 Array Subscripting
	5.3 Function Calls
	5.4 Constructors
	5.4.1 Conversion and Scalar Constructors
	5.4.2 Vector and Matrix Constructors
	5.4.3 Structure Constructors

	5.5 Vector Components
	5.6 Matrix Components
	5.7 Structures and Fields
	5.8 Assignments
	5.9 Expressions
	5.10 Vector and Matrix Operations

	6 Statements and Structure
	6.1 Function Definitions
	6.1.1 Function Calling Conventions

	6.2 Selection
	6.3 Iteration
	6.4 Jumps

	7 Built-in Variables
	7.1 Vertex Shader Special Variables
	7.2 Fragment Shader Special Variables
	7.3 Vertex Shader Built-In Attributes
	7.4 Built-In Constants
	7.5 Built-In Uniform State
	7.6 Varying Variables

	8 Built-in Functions
	8.1 Angle and Trigonometry Functions
	8.2 Exponential Functions
	8.3 Common Functions
	8.4 Geometric Functions
	8.5 Matrix Functions
	8.6 Vector Relational Functions
	8.7 Texture Lookup Functions
	8.8 Fragment Processing Functions
	8.9 Noise Functions

	9 Shading Language Grammar
	10 Issues
	11 Acknowledgements

