
THE OPENGL® SHADING LANGUAGE 1
John Kessenich

Dave Baldwin

Randi Rost

Language Version 1.10

Document Revision 59

30-April-2004
i The OpenGL Shading Language

Copyright © 2002-2004 3Dlabs, Inc. Ltd.

This document contains unpublished information of 3Dlabs, Inc. Ltd.

This document is protected by copyright, and contains information proprietary to 3Dlabs, Inc. Ltd. Any
copying, adaptation, distribution, public performance, or public display of this document without the
express written consent of 3Dlabs, Inc. Ltd. is strictly prohibited. The receipt or possession of this
document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture,
use, or sell anything that it may describe, in whole or in part.

This document contains intellectual property of 3Dlabs Inc. Ltd., but does not grant any license to any
intellectual property from 3Dlabs or any third party. It is 3Dlabs' intent that should an OpenGL 2.0 API
specification be ratified by the ARB incorporating all or part of the contents of this document, then
3Dlabs would grant a royalty free license to Silicon Graphics, Inc., according to the ARB bylaws, for only
that 3Dlabs intellectual property as is required to produce a conformant implementation.

This specification is provided "AS IS" WITH NO WARRANTIES WHATSOEVER, WHETHER
EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, 3DLABS EXPRESSLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION, OR SAMPLE.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth in FAR
52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013 and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the United States.
Contractor/manufacturer is 3Dlabs, Inc. Ltd., 9668 Madison Blvd., Madison, Alabama 35758.

OpenGL is a registered trademark of Silicon Graphics Inc.
The OpenGL Shading Language ii

CONTENTS

1 INTRODUCTION. 1

1.1 Changes since version 1.051 . 1
1.2 Overview . 2
1.3 Motivation . 2
1.4 Design Considerations . 3
1.5 Error Handling . 3
1.6 Typographical Conventions . 4

2 OVERVIEW OF OPENGL SHADING. 5

2.1 Vertex Processor. 5
2.2 Fragment Processor . 6

3 BASICS . 8

3.1 Character Set . 8
3.2 Source Strings. 8
3.3 Preprocessor . 9
3.4 Comments. 13
3.5 Tokens . 13
3.6 Keywords . 14
3.7 Identifiers . 14

4 VARIABLES AND TYPES . 16

4.1 Basic Types . 16
4.1.1 Void . 17
4.1.2 Booleans . 17
4.1.3 Integers . 17
4.1.4 Floats . 18
4.1.5 Vectors . 19
4.1.6 Matrices . 19
4.1.7 Samplers . 19
4.1.8 Structures . 20
4.1.9 Arrays . 21

4.2 Scoping . 21
4.3 Type Qualifiers . 22
iii TheOpenGLShadingLanguage

4.3.1 Default Qualifiers . 22
4.3.2 Const . 23
4.3.3 Integral Constant Expressions . 23
4.3.4 Attribute . 23
4.3.5 Uniform . 24
4.3.6 Varying . 24

5 OPERATORS AND EXPRESSIONS . 26

5.1 Operators . 26
5.2 Array Subscripting . 27
5.3 Function Calls. 27
5.4 Constructors . 27

5.4.1 Conversion and Scalar Constructors . 27
5.4.2 Vector and Matrix Constructors . 28
5.4.3 Structure Constructors . 29

5.5 Vector Components . 29
5.6 Matrix Components . 31
5.7 Structures and Fields . 31
5.8 Assignments . 31
5.9 Expressions. 32
5.10 Vector and Matrix Operations . 34

6 STATEMENTS AND STRUCTURE. 36

6.1 Function Definitions. 37
6.1.1 Function Calling Conventions . 38

6.2 Selection . 39
6.3 Iteration. 40
6.4 Jumps . 41

7 BUILT-IN VARIABLES . 42

7.1 Vertex Shader Special Variables . 42
7.2 Fragment Shader Special Variables 43
7.3 Vertex Shader Built-In Attributes 44
7.4 Built-In Constants. 44
7.5 Built-In Uniform State . 45
7.6 Varying Variables. 48

8 BUILT-IN FUNCTIONS . 50

8.1 Angle and Trigonometry Functions 51
8.2 Exponential Functions . 52
8.3 Common Functions . 52
8.4 Geometric Functions . 54
8.5 Matrix Functions . 55
The OpenGL Shading Language iv

8.6 Vector Relational Functions . 55
8.7 Texture Lookup Functions . 56
8.8 Fragment Processing Functions . 58
8.9 Noise Functions . 60

9 SHADING LANGUAGE GRAMMAR. 62

10 ISSUES . 73

11 ACKNOWLEDGEMENTS . 104
v TheOpenGLShadingLanguage

The OpenGL Shading Language vi

1 INTRODUCTION 1
Note: Document revisions for the language specified by this document are being tracked separately from
the language version. Changing the revision of the document does not change the version of the language.
This document specifies version 1.10 of the OpenGL Shading Language, document revision number 59.
It requires __VERSION__ to be 110, and #version to accept 110.

1.1 Changes since version 1.051

• Added issues 101 through 105. Specification changes made from these issues are to make
array parameters sized, and add some limitations in constructors. See sections 4.2, 5.4.2,
6.1, 6.1.1.

• Added interactions with ATI_draw_buffers and ARB_color_clamp_control, particularly,
the output variable gl_FragData[n].

• 3.3 Added #version and #extension to declare version and extensions.
• 7.5 Added built-in state for the inverses and transposes of matrices.
• 8 Added built-in functions refract, exp, and log.
• Added the following clarifications and corrections:

• 2.1 Remove "Clamping of colors" from the list of what the vertex processor does.
This was just out of date.

• 2.1 Change "Perspective projection" to more clearly call out projective transform and
perspective division, which belong in different lists.

• 3.3 Reserved pre-processor macros that start “GL_”.
• 3.6 Added reserved words packed, this, interface, sampler2DRectShadow. Also

clarified that the listed keywords and reserved words are the only ones.
• 4.1.5 Remove "Integer vectors can be used to get multiple integers back from a

texture read." This was just out of date.
• 4.3.5 Clarified that structs can be constants, and what const must be initialized with.
• 5.8 Clarify what *=, +=, etc. really mean. and that ?: is not an l-value.
• 5.9 Clarify that operating between a scalar and a vector is allowed for integers as for

floats, and that the list is to list all operators and expressions.
• 6.1 Correct the examples of dot product prototypes. They were not correct WRT to

the list of prototypes, which themselves have been correct for some time.
• 6.1 Add the clarification "If a built-in function is redeclared in a shader (i.e. a

prototype is visible) before a call to it, then the linker will only attempt to resolve that
call within the set shaders that are linked with it."

• 7.2 Remove the out of date text "an implementation will provide invariant results
within shaders computing depth with the same source-level expression, but invariance
is not provided between shaders and fixed functionality."
1 The OpenGL Shading Language

I N T R O D U C T I O N
• 7.4 Correct the list of built-in constant names: removed suffixes and brought values
up to date.

• 8.2 State the domains for the exponential functions.
• 8.3 Change step() to compare x < edge instead of x <= edge.
• 8.7 Clarify the discussion about when shadowing lookups are undefined.
• 8.9 Further specify the range and frequency constraints of noise.
• Grammar: MOD_ASSIGN change to reserved (to match the specification text).
• Grammar: Change to require array sizes in function parameters.

• Several typos fixed.

1.2 Overview

This document describes a programming language called The OpenGL Shading Language, or glslang.
The recent trend in graphics hardware has been to replace fixed functionality with programmability in
areas that have grown exceedingly complex (e.g., vertex processing and fragment processing). The
OpenGL Shading Language has been designed to allow application programmers to express the
processing that occurs at those programmable points of the OpenGL pipeline.

Independently compilable units that are written in this language are called shaders. A program is a set of
shaders that are compiled and linked together. The aim of this document is to thoroughly specify the
programming language. The OpenGL entry points that are used to manipulate and communicate with
programs and shaders are defined separately from this language specification.

The OpenGL Shading Language is based on ANSI C and many of the features have been retained except
when they conflict with performance or ease of implementation. C has been extended with vector and
matrix types (with hardware based qualifiers) to make it more concise for the typical operations carried
out in 3D graphics. Some mechanisms from C++ have also been borrowed, such as overloading functions
based on argument types, and ability to declare variables where they are first needed instead of at the
beginning of blocks.

1.3 Mot iva t ion

Semiconductor technology has progressed to the point where the levels of computation that can be done
per vertex or per fragment have gone beyond what is feasible to describe by the traditional OpenGL
mechanisms of setting state to influence the action of fixed pipeline stages.

A desire to expose the extended capability of the hardware has resulted in a vast number of extensions
being written and an unfortunate consequence of this is to reduce, or even eliminate, the portability of
applications, thereby undermining one of the key motivating factors for OpenGL.

A natural way of taming this complexity and the proliferation of extensions is to allow parts of the
pipeline to be replaced by user programmable stages. This has been done in some recent extensions but
the programming is done in assembler, which is a direct expression of today's hardware and not forward
looking. Mainstream programmers have progressed from assembler to high-level languages to gain
productivity, portability and ease of use. These goals are equally applicable to programming shaders.
The OpenGL Shading Language 2

I N T R O D U C T I O N
The goal of this work is a forward looking hardware independent high-level language that is easy to use
and powerful enough to stand the test of time and drastically reduce the need for extensions. These
desires must be tempered by the need for fast implementations within a generation or two of hardware.

1.4 Design Considera tions

The various programmable processors we are going to introduce replace parts of the OpenGL pipeline and
as a starting point they need to be able to do everything they are replacing. This is just the beginning and
the examples from the RenderMan community and newer games provide some hints at the exciting
possibilities ahead.

To facilitate this, the shading language should be at a high enough level and with the abstractions for the
problem domain we are addressing. For graphics this means vector and matrix operations form a
fundamental part of the language. This extends from being able to specify scalar/vector/matrix operations
directly in expressions to efficient ways to manipulate and group the components of vectors and matrices.
The language includes a rich set of built-in functions that operate just as easily on vectors as on scalars.

We are fortunate in having the C language as a base to build on and RenderMan as an existing shading
language to learn from. OpenGL is associated with “real-time” graphics (as opposed to off-line graphics)
so any aspects of C and RenderMan that hinder efficient compilation or hardware implementation have
been dropped, but, for the most part, these are not expected to be noticeable.

The OpenGL Shading Language is designed specifically for use within the OpenGL environment. It is
intended to provide programmable alternatives to certain parts of the fixed functionality of OpenGL. By
design, it is possible, and quite easy to refer to existing OpenGL state for these parts from within a shader.
By design, it is also possible, and quite easy to use fixed functionality in one part of the OpenGL
processing pipeline and programmable processing in another. It is the intent that the object code
generated for a shader be independent of other OpenGL state, so that recompiles or managing multiple
copies of object code are not necessary.

Graphics hardware is developing more and more parallelism at both the vertex and the fragment
processing levels. Great care has been taken in the definition of the OpenGL Shading Language to allow
for even higher levels of parallel processing.

Finally, it is a goal to use the same high-level programming language for all of the programmable portions
of the OpenGL pipeline. Certain types and built-in functions are not permitted on certain programmable
processors, but the majority of the language is the same across all programmable processors. This makes
it much easier for application developers to embrace the shading language and use it to solve their
OpenGL rendering problems.

1.5 Error Handl ing

Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. For example, completely accurate detection of use of an uninitialized variable is not
possible. Portability is only ensured for well-formed programs, which this specification describes.
Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are not
3 TheOpenGLShadingLanguage

I N T R O D U C T I O N
required to do so for all cases. Compilers are required to return messages regarding lexically,
grammatically, or semantically incorrect shaders.

1.6 Typographica l Convent ions

Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in Section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.
The OpenGL Shading Language 4

O V E R V I E W O F O P E N G L S H A D I N G
2 OVERVIEW OF OPENGL SHADING 222
The OpenGL Shading Language is actually two closely related languages. These languages are used to
create shaders for the programmable processors contained in the OpenGL processing pipeline. The
precise definition of these programmable units is left to separate specifications. In this document, we
define them only well enough to provide a context for defining these languages.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex or fragment.

2.1 Vertex Processor

The vertex processor is a programmable unit that operates on incoming vertex values and their associated
data. The vertex processor is intended to perform traditional graphics operations such as:

• Vertex transformation (modelview and projection matrices)
• Normal transformation and normalization
• Texture coordinate generation
• Texture coordinate transformation
• Lighting
• Color material application

Programs written in the OpenGL Shading Language that are intended to run on this processor are called
vertex shaders. Vertex shaders can be used to specify a completely general sequence of operations to be
applied to each vertex and its associated data. Vertex shaders that perform some of the computations in the
list above are responsible for writing the code for all desired functionality from the list above. For
instance, it is not possible to use the existing fixed functionality to perform the vertex and normal
transformation but have a vertex shader perform a specialized lighting function. The vertex shader must
be written to perform all three functions.

The vertex processor does not replace graphics operations that require knowledge of several vertices at a
time or that require topological knowledge, such as:

• Perspective division
• viewport mapping
• Primitive assembly
• Frustum and user clipping
• Backface culling
• Two-sided lighting selection
• Polymode processing
• Polygon offset
5 TheOpenGLShadingLanguage

O V E R V I E W O F O P E N G L S H A D I N G
• Depth Range

Any OpenGL state used by the shader is automatically tracked and made available to the shader. This
automatic state tracking mechanism allows the application to use existing OpenGL state commands for
state management and have the current values of such state automatically available for use in the vertex
shader.

The vertex processor operates on one vertex at a time. The design of the vertex processor is focused on
the functionality needed to transform and light a single vertex. Vertex shaders must compute the
homogeneous position of the coordinate, and they may also compute color, texture coordinates, and other
arbitrary values to be passed to the fragment processor. The output of the vertex processor is sent through
subsequent stages of processing that are defined exactly the same as they are for OpenGL 1.4: primitive
assembly, user clipping, frustum clipping, perspective projection, viewport mapping, polygon offset,
polygon mode, shade mode, and culling. This programmable unit does not have the capability of reading
from the frame buffer. However, it does have texture lookup capability. Level of detail is not computed
by the implementation for a vertex shader, but can be specified in the shader. The OpenGL parameters for
texture maps define the behavior of the filtering operation, borders, and wrapping.

2.2 Fragment Processor

The fragment processor is a programmable unit that operates on fragment values and their associated
data. The fragment processor is intended to perform traditional graphics operations such as:

• Operations on interpolated values
• Texture access
• Texture application
• Fog
• Color sum

Programs written in the OpenGL Shading Language that are intended to run on this processor are called
fragment shaders. Fragment shaders can be used to specify a completely general sequence of operations
to be applied to each fragment. Fragment shaders that perform some of the computations from the list
above must perform all desired functionality from the list above. For instance, it is not possible to use the
existing fixed functionality to compute fog but have a fragment shader perform specialized texture access
and texture application. The fragment shader must be written to perform all three functions.

The fragment processor does not replace the fixed functionality graphics operations that occur at the back
end of the OpenGL pixel processing pipeline such as:

• Shading model
• Coverage
• Pixel ownership test
• Scissor
• Stipple
• Alpha test
• Depth test
• Stencil test
• Alpha blending
The OpenGL Shading Language 6

O V E R V I E W O F O P E N G L S H A D I N G
• Logical ops
• Dithering
• Plane masking

Related OpenGL state is also automatically tracked if used by the shader. A fragment shader cannot
change a fragment's x/y position. To support parallelism at the fragment processing level, fragment
shaders are written in a way that expresses the computation required for a single fragment, and access to
neighboring fragments is not allowed. A fragment shader is free to read multiple values from a single
texture, or multiple values from multiple textures. The values computed by the fragment shader are
ultimately used to update frame-buffer memory or texture memory, depending on the current OpenGL
state and the OpenGL command that caused the fragments to be generated.

The OpenGL parameters for texture maps continue to define the behavior of the filtering operation,
borders, and wrapping. These operations are applied when a texture is accessed. The fragment shader is
free to use the resulting texel however it chooses. It is possible for a fragment shader to read multiple
values from a texture and perform a custom filtering operation. It is also possible to use a texture to
perform a lookup table operation. In both cases the texture should have its texture parameters set so that
nearest neighbor filtering is applied on the texture access operations.

For each fragment, the fragment shader may compute color and/or depth, or completely discard the
fragment.

The results of the fragment shader are then sent on for further processing. The remainder of the OpenGL
pipeline remains as defined in OpenGL 1.4. Fragments are submitted to coverage application, pixel
ownership testing, scissor testing, alpha testing, stencil testing, depth testing, blending, dithering, logical
operations, and masking before ultimately being written into the frame buffer. The primary reason for
keeping the fixed functionality at the back end of the processing pipeline is that the fixed functionality is
cheap and easy to implement in hardware. Making these functions programmable is more complex, since
read/modify/write operations can introduce significant instruction scheduling issues and pipeline stalls.
Most of these fixed functionality operations can be disabled, and alternate operations can be performed
within a fragment shader if desired.
7 TheOpenGLShadingLanguage

B A S I C S
3 BASICS 3
3.1 Character Set

The source character set used for the OpenGL shading languages is a subset of ASCII. It includes the
following characters:

The letters a-z, A-Z, and the underscore (_).

The numbers 0-9.

The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (< and
>), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (^), vertical bar (|),
ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma (,), and
question mark (?).

The number sign (#) for preprocessor use.

White space: the space character, horizontal tab, vertical tab, form feed, carriage-return, and line-
feed.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any these combinations is simply referred to as a new-line.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character. The end of a source string is indicated by a length, not a character.

3.2 Source Str ings

The source for a single shader is an array of strings of characters from the character set. A single shader is
made from the concatenation of these strings. Each string can contain multiple lines, separated by new-
lines. No new-lines need be present in a string; a single line can be formed from multiple strings. No
new-lines or other characters are inserted by the implementation when it concatenates the strings to form
a single shader. Multiple shaders of the same language (vertex or fragment) can be linked together to
form a single program.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new-lines that have been processed.
The OpenGL Shading Language 8

B A S I C S
3.3 Preprocessor

There is a preprocessor that processes the source strings before they are compiled.

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension
#version

#line

The following operators are also available

defined

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new-
line. Preprocessing does not change the number or relative location of new-lines in a source string.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause a diagnostic
message and make the implementation treat the shader as ill-formed.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

__LINE__
__FILE__
__VERSION__

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new-
lines in the current source string.

__FILE__ will substitute a decimal integer constant that says which source string number is currently
being processed.
9 TheOpenGLShadingLanguage

B A S I C S
__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL shading
language. The version of the shading language described in this document will have __VERSION__
substitute the decimal integer 110.

All macro names containing two consecutive underscores (__) are reserved for future use as predefined
macro names. All macro names prefixed with “GL_” (“GL” followed by a single underscore) are also
reserved.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as is standard for C++ preprocessors.
Expressions following #if and #elif are restricted to expressions operating on literal integer constants, plus
identifiers consumed by the defined operator. Character constants are not supported. The operators
available are

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

There are no number sign based operators (no #, #@, ##, etc.), nor is there a sizeof operator.

The semantics of applying operators to integer literals in the preprocessor match those standard in the
C++ preprocessor, not those in the OpenGL Shading Language.

Preprocessor expressions will be evaluated according to the behavior of the host processor, not the
processor targeted by the shader.

#error will cause the implementation to put a diagnostic message into the shader’s information log (see
the API in external documentation for how to access a shader’s information log). The message will be the
tokens following the #error directive, up to the first new-line. The implementation must then consider
the shader to be ill-formed.

Precedence Operator class Operators Associativity

1 (highest) parenthetical grouping () NA

2 unary defined
+ - ~ !

Right to Left

3 multiplicative * / % Left to Right

4 additive + - Left to Right

5 bit-wise shift << >> Left to Right

6 relational < > <= >= Left to Right

7 equality == != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 logical inclusive or | | Left to Right
The OpenGL Shading Language 10

B A S I C S
#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of this language. No
implemention may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

Shaders should declare the version of the language they are written to. The language version a shader is
written to is specified by

#version number

where number must be 110 for this specification’s version of the language (following the same convention
as __VERSION__ above), in which case the directive will be accepted with no errors or warnings. Any
number less than 110 will cause an error to be generated. Any number greater than the latest version of the
language a compiler supports will also cause an error to be generated. Version 110 of the language does
not require shaders to include this directive, and shaders that do not include a #version directive will be
treated as targeting version 110. Compilers for subsequent versions of this language are guaranteed, on
seeing the “#version 110” directive in a shader, to either support version 110, or to issue an error that they
do not support it.

The #version directive must occur in a shader before anything else, except for comments and white space.

By default, compilers of this language must issue compile time syntactic, grammatical, and semantic
errors for shaders that do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with to respect to extensions are declared with the
#extension directive

#extension extension_name : behavior
#extension all : behavior
11 TheOpenGLShadingLanguage

B A S I C S
where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

behavior Effect

require Behave as specified by the extension extension_name.

Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enable Behave as specified by the extension extension_name.

Warn on the #extension if the extension extension_name is not supported.

Give an error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings on
any detectable use of that extension that is not supported by other enabled or
required extensions.

If all is specified, then warn on all detectable uses of any extension used.

Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended core
version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.
The OpenGL Shading Language 12

B A S I C S
Macro expansion is not done on lines containing #extension and #version directives.

#line must have, after macro substitution, one of the following two forms:

#line line
#line line source-string-number

where line and source-string-number are constant integer expressions. After processing this directive
(including its new-line), the implementation will behave as if it is compiling at line number line+1 and
source string number source-string-number. Subsequent source strings will be numbered sequentially,
until another #line directive overrides that numbering.

3.4 Comments

Comments are delimited by /* and */, or by // and a new-line. The begin comment delimiters (/* or //) are
not recognized as comment delimiters inside of a comment, hence comments cannot be nested. If a
comment resides entirely within a single line, it is treated syntactically as a single space.

3.5 Tokens

The language is a sequence of tokens. A token can be

token:
keyword
identifier
integer-constant
floating-constant
operator
13 TheOpenGLShadingLanguage

B A S I C S
3.6 Keywords

The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

attribute const uniform varying

break continue do for while

if else

in out inout

float int void bool true false

discard return

mat2 mat3 mat4

vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4

sampler1D sampler2D sampler3D samplerCube sampler1DShadow sampler2DShadow

struct

The following are the keywords reserved for future use. Using them will result in an error:

asm

class union enum typedef template this packed

goto switch default

inline noinline volatile public static extern external interface

long short double half fixed unsigned

input output

hvec2 hvec3 hvec4 dvec2 dvec3 dvec4 fvec2 fvec3 fvec4

sampler2DRect sampler3DRect sampler2DRectShadow

sizeof cast

namespace using

In addition, all identifiers containing two consecutive underscores (__) are reserved as possible future
keywords.

3.7 Ident i f ie rs

Identifiers are used for variable names, function names, struct names, and field selectors (field selectors
select components of vectors and matrices similar to structure fields, as discussed in Section 5.5 “Vector
Components” and Section 5.6 “Matrix Components”). Identifiers have the form
The OpenGL Shading Language 14

B A S I C S
identifier
nondigit
identifier nondigit
identifier digit

nondigit: one of
_ a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved for use by OpenGL, and may not be declared in a shader as
either a variable or a function.
15 TheOpenGLShadingLanguage

VA R I A B L E S A N D TY P E S
4 VARIABLES AND TYPES 34
All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=). The grammar near the end of this document provides a full reference for the
syntax of declaring variables.

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL Shading Language is type safe. There are no implicit conversions between types.

4.1 Basic Types

The OpenGL Shading Language supports the following basic data types.

void for functions that do not return a value
bool a conditional type, taking on values of true or false
int a signed integer
float a single floating-point scalar
vec2 a two component floating-point vector
vec3 a three component floating-point vector
vec4 a four component floating-point vector
bvec2 a two component Boolean vector
bvec3 a three component Boolean vector
bvec4 a four component Boolean vector
ivec2 a two component integer vector
ivec3 a three component integer vector
ivec4 a four component integer vector
mat2 a 2×2 floating-point matrix
mat3 a 3×3 floating-point matrix
mat4 a 4×4 floating-point matrix
sampler1D a handle for accessing a 1D texture
sampler2D a handle for accessing a 2D texture
sampler3D a handle for accessing a 3D texture
samplerCube a handle for accessing a cube mapped texture
The OpenGL Shading Language 16

VA R I A B L E S A N D TY P E S
In addition, a shader can aggregate these using arrays and structures to build more complex types.

There are no pointer types.

4.1.1 Void

Functions that do not return a value must be declared as void. There is no default function return type.

4.1.2 Booleans

To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type, holding
only one of two values meaning either true or false. Two keywords true and false can be used as Boolean
constants. Booleans are declared and optionally initialized as in the follow example:

bool success; // declare “success” to be a Boolean
bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) can be any expression whose type is bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3 Integers

Integers are mainly supported as a programming aid. At the hardware level, real integers would aid
efficient implementation of loops and array indices, and referencing texture units. However, there is no
requirement that integers in the language map to an integer type in hardware. It is not expected that
underlying hardware has full support for a wide range of integer operations. Because of their intended
(limited) purpose, integers are limited to 16 bits of precision, plus a sign representation in both the vertex
and fragment languages. An OpenGL Shading Language implementation may convert integers to floats
to operate on them. An implementation is allowed to use more than 16 bits of precision to manipulate
integers. Hence, there is no portable wrapping behavior. Shaders that overflow the 16 bits of precision
may not be portable.

Integers are declared and optionally initialized with integer expressions as in the following example:

int i, j = 42;

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16) as
follows.

integer-constant :
decimal-constant
octal-constant
hexadecimal-constant

decimal-constant :
nonzero-digit
decimal-constant digit

sampler1DShadow a handle for accessing a 1D depth texture with comparison
sampler2DShadow a handle for accessing a 2D depth texture with comparison
17 TheOpenGLShadingLanguage

VA R I A B L E S A N D TY P E S
octal-constant :
0
octal-constant octal-digit

hexadecimal-constant :
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

digit :
0
nonzero-digit

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

octal-digit : one of
0 1 2 3 4 5 6 7

hexadecimal-digit : one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or after
the leading 0x or 0X of a constant. A leading unary minus sign (-) is interpreted as an arithmetic unary
negation, not as part of the constant. There are no letter suffixes.

4.1.4 Floats

Floats are available for use in a variety of scalar calculations. Floating-point variables are defined as in the
following example:

float a, b = 1.5;

As an input value to one of the processing units, a floating-point variable is expected to match the IEEE
single precision floating-point definition for precision and dynamic range. It is not required that the
precision of internal processing match the IEEE floating-point specification for floating-point operations,
but the guidelines for precision established by the OpenGL 1.4 specification must be met. Similarly,
treatment of conditions such as divide by 0 may lead to an unspecified result, but in no case should such a
condition lead to the interruption or termination of processing.

Floating-point constants are defined as follows.

floating-constant :
fractional-constant exponent-partopt

digit-sequence exponent-part

fractional-constant :
digit-sequence . digit-sequence
digit-sequence .
. digit-sequence
The OpenGL Shading Language 18

VA R I A B L E S A N D TY P E S
exponent-part :
e signopt digit-sequence

E signopt digit-sequence

sign : one of
+ –

digit-sequence :
digit
digit-sequence digit

A decimal point (.) is not needed if the exponent part is present.

4.1.5 Vectors

The OpenGL Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, or Booleans. Floating-point vector variables can be used to store a variety
of things that are very useful in computer graphics: colors, normals, positions, texture coordinates, texture
lookup results and the like. Boolean vectors can be used for component-wise comparisons of numeric
vectors. Defining vectors as part of the shading language allows for direct mapping of vector operations
on graphics hardware that is capable of doing vector processing. In general, applications will be able to
take better advantage of the parallelism in graphics hardware by doing computations on vectors rather
than on scalar values. Some examples of vector declaration are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 lessThan;

Initialization of vectors can be done with constructors, which are discussed shortly.

4.1.6 Matrices

Matrices are another useful data type in computer graphics, and the OpenGL Shading Language defines
support for 2×2, 3×3, and 4×4 matrices of floating point numbers. Matrices are read from and written to
in column major order. Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;

Initialization of matrix values is done with constructors (described in Section 5.4 “Constructors”).

4.1.7 Samplers

Sampler types (e.g. sampler2D) are effectively opaque handles to textures. They are used with the built-
in texture functions (described in Section 8.7 “Texture Lookup Functions”) to specify which texture to
access. They can only be declared as function parameters or uniforms (see Section 4.3.5 “Uniform”).
Samplers are not allowed to be operands in expressions nor can they be assigned into. As uniforms, they
are initialized with the OpenGL API. As function parameters, only samplers may be passed to samplers
19 TheOpenGLShadingLanguage

VA R I A B L E S A N D TY P E S
of matching type. This enables consistency checking between shader texture accesses and OpenGL
texture state before a shader is run.

4.1.8 Structures

User-defined types can be created by aggregating other already defined types into a structure using the
struct keyword. For example,

struct light {
float intensity;
vec3 position;

} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the complete correct grammar is as given in
Section 9 “Shading Language Grammar”.

struct-definition :
qualifieropt struct nameopt { member-list } declaratorsopt ;

member-list :
member-declaration;
member-declaration member-list;

member-declaration :
basic-type declarators;
embedded-struct-definition

embedded-struct-definition:
struct nameopt { member-list } declarator;

where name becomes the user-defined type, and can be used to declare variables to be of this new type.
The name shares the same name space as other variables and types, with the same scoping rules. The
optional qualifier only applies to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration. Member declarators do not contain any qualifiers.
Nor do they contain any bit fields. Member types must be either already defined (there are no forward
references), or defined in-place by embedding another struct definition. Member declarations cannot
contain initializers. Member declarators can contain arrays. Such arrays must have a size specified, and
the size must be an integral constant expression that's greater than zero (see Section 4.3.3 “Integral
Constant Expressions”). Each level of structure has its own namespace for names given in member
declarators; such names need only be unique within that namespace.

Anonymous structures are not supported; so embedded structures must have a declarator. A name given
to an embedded struct is scoped at the same level as the struct it is embedded in.

Structures can be initialized at declaration time using constructors, as discussed in Section 5.4.3
“Structure Constructors”.
The OpenGL Shading Language 20

VA R I A B L E S A N D TY P E S
4.1.9 Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing an optional size. When an array size is specified in a declaration, it must be an integral constant
expression (see Section 4.3.3 “Integral Constant Expressions”) greater than zero. If an array is indexed
with an expression that is not an integral constant expression or passed as an argument to a function, then
its size must be declared before any such use. It is legal to declare an array without a size and then later
re-declare the same name as an array of the same type and specify a size. It is illegal to declare an array
with a size, and then later (in the same shader) index the same array with an integral constant expression
greater than or equal to the declared size. It is also illegal to index an array with a negative constant
expression. Arrays declared as formal parameters in a function declaration must specify a size.
Undefined behavior results from indexing an array with a non-constant expression that’s greater than or
equal to the array’s size or less than 0. Only one-dimensional arrays may be declared. All basic types and
structures can be formed into arrays. Some examples are:

float frequencies[3];
uniform vec4 lightPosition[4];
light lights[];
const int numLights = 2;
light lights[numLights];

There is no mechanism for initializing arrays at declaration time from within a shader.

4.2 Scoping

The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
it is declared in. If it is declared in a while test or a for statement, then it is scoped to the end of the
following sub-statement. Otherwise, if it is declared as a statement within a compound statement, it is
scoped to the end of that compound statement. If it is declared as a parameter in a function definition, it is
scoped until the end of that function definition. A function body has a scope nested inside the function’s
definition. The if statement’s expression does not allow new variables to be declared, hence does not
form a new scope.

A variable declared as an empty array can be re-declared as an array of the same base type. Otherwise,
within one compilation unit, a variable with the same name cannot be re-declared in the same scope.
However, a nested scope can override an outer scope’s declaration of a particular variable name.
Declarations in a nested scope provide separate storage from the storage associated with an overridden
name.

All variables in the same scope share the same name space. Functions names are always identifiable as
function names based on context, and they have their own name space.

Shared globals are global variables declared with the same name in independently compiled units
(shaders) of the same language (vertex or fragment) that are linked together to make a single program.
Shared globals share the same namespace, and must be declared with the same type. They will share the
same storage. Shared global arrays must have the same base type and the same size. Scalars must have
exactly the same type name and type definition. Structures must have the same name, sequence of type
21 TheOpenGLShadingLanguage

VA R I A B L E S A N D TY P E S
names, and type definitions, and field names to be considered the same type. This rule applies recursively
for nested or embedded types. All initializers for a shared global must have the same value, or a link error
will result.

4.3 Type Quali f i ers

Variable declarations may have one or more qualifiers, specified in front of the type. These are
summarized as

Global variables can only use the qualifiers const, attribute, uniform, or varying. Only one may be
specified.

Local variables can only use the qualifier const.

Function parameters can only use the in, out, inout, or const qualifiers. Parameter qualifiers are
discussed in more detail in Section 6.1.1 “Function Calling Conventions”.

Function return types and structure fields do not use qualifiers.

Data types for communication from one run of a shader to its next run (to communicate between
fragments or between vertices) do not exist. This would prevent parallel execution of the same shader on
multiple vertices or fragments.

Declarations of globals without a qualifier, or with just the const qualifier may include initializers, in
which case they will be initialized before the first line of main() is executed. Such initializers must have
constant type. Global variables without qualifiers that are not initialized in their declaration or by the
application will not be initialized by OpenGL, but rather will enter main() with undefined values.

4.3.1 Default Qualifiers

If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other processors. For either global or local unqualified variables, the declaration will appear
to allocate memory associated with the processor it targets. This variable will provide read/write access to
this allocated memory.

< none: default > local read/write memory, or an input parameter to a function
const a compile-time constant, or a function parameter that is read-only
attribute linkage between a vertex shader and OpenGL for per-vertex data
uniform value does not change across the primitive being processed,

uniforms form the linkage between a shader, OpenGL, and the
application

varying linkage between a vertex shader and a fragment shader for
interpolated data

in for function parameters passed into a function
out for function parameters passed back out of a function, but not

initialized for use when passed in
inout for function parameters passed both into and out of a function
The OpenGL Shading Language 22

VA R I A B L E S A N D TY P E S
4.3.2 Const

Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more descriptive
shaders than using hard-wired numerical constants. The const qualifier can be used with any of the basic
data types. It is an error to write to a const variable outside of its declaration, so they must be initialized
when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

Structure fields may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor.

Initializers for const declarations must be formed from literal values, other const variables (not including
function call paramaters), or expressions of these.

Constructors may be used in such expressions, but function calls may not.

4.3.3 Integral Constant Expressions

An integral constant expression can be one of

• a literal integer value
• a global or local scalar integer variable qualified as const, not including function parameters

qualified as const
• an expression whose operands are integral constant expressions, including constructors, but

excluding function calls.

4.3.4 Attribute

The attribute qualifier is used to declare variables that are passed to a vertex shader from OpenGL on a
per-vertex basis. It is an error to declare an attribute variable in any type of shader other than a vertex
shader. Attribute variables are read-only as far as the vertex shader is concerned. Values for attribute
variables are passed to a vertex shader through the OpenGL vertex API or as part of a vertex array. They
convey vertex attributes to the vertex shader and are expected to change on every vertex shader run. The
attribute qualifier can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and mat4.
Attribute variables cannot be declared as arrays or structures.

Example declarations:

attribute vec4 position;
attribute vec3 normal;
attribute vec2 texCoord;

All the standard OpenGL vertex attributes have built-in variable names to allow easy integration between
user programs and OpenGL vertex functions. See Section 7 “Built-in Variables” for a list of the built-in
attribute names.

It is expected that graphics hardware will have a small number of fixed locations for passing vertex
attributes. Therefore, the OpenGL Shading language defines each non-matrix attribute variable as having
space for up to four floating-point values (i.e., a vec4). There is an implementation dependent limit on the
23 TheOpenGLShadingLanguage

VA R I A B L E S A N D TY P E S
number of attribute variables that can be used and if this is exceeded it will cause a link error. (Declared
attribute variables that are not used do not count against this limit.) A float attribute counts the same
amount against this limit as a vec4, so applications may want to consider packing groups of four unrelated
float attributes together into a vec4 to better utilize the capabilities of the underlying hardware. A mat4
attribute will use up the equivalent of 4 vec4 attribute variable locations, a mat3 will use up the equivalent
of 3 attribute variable locations, and a mat2 will use up 2 attribute variable locations. How this space is
utilized by the matrices is hidden by the implementation through the API and language.

Attribute variables are required to have global scope, and must be declared outside of function bodies,
before their first use.

4.3.5 Uniform

The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only and are initialized either directly by an
application via API commands, or indirectly by OpenGL.

An example declaration is:

uniform vec4 lightPosition;

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit. The number of user-defined
uniform variables and the number of built-in uniform variables that are used within a shader are added
together to determine whether available uniform storage has been exceeded.

If multiple shaders are linked together, then they will share a single global uniform name space. Hence,
types of uniforms with the same name must match across all shaders that are linked into a single
executable.

4.3.6 Varying

Varying variables provide the interface between the vertex shader, the fragment shader, and the fixed
functionality between them. The vertex shader will compute values per vertex (such as color, texture
coordinates, etc.) and write them to variables declared with the varying qualifier. A vertex shader may
also read varying variables, getting back the same values it has written. Reading a varying variable in a
vertex shader returns undefined values if it is read before being written.

By definition, varying variables are set per vertex and are interpolated in a perspective-correct manner
over the primitive being rendered. If single-sampling, the interpolated value is for the fragment center. If
multi-sampling, the interpolated value can be anywhere within the pixel, including the fragment center or
one of the fragment samples.

A fragment shader may read from varying variables and the value read will be the interpolated value, as a
function of the fragment's position within the primitive. A fragment shader can not write to a varying
variable.
The OpenGL Shading Language 24

VA R I A B L E S A N D TY P E S
The type of varying variables with the same name declared in both the vertex and fragments shaders must
match, otherwise the link command will fail. Only those varying variables used (i.e. read) in the fragment
shader must be written to by the vertex shader; declaring superfluous varying variables in the vertex
shader is permissible.

Varying variables are declared as in the following example:

varying vec3 normal;

The varying qualifier can be used only with the data types float, vec2, vec3, vec4, mat2, mat3, and
mat4, or arrays of these. Structures cannot be varying.

If no vertex shader is active, the fixed functionality pipeline of OpenGL will compute values for the built-
in varying variables that will be consumed by the fragment shader. Similarly, if no fragment shader is
active, the vertex shader is responsible for computing and writing to the varying variables that are needed
for OpenGL’s fixed functionality fragment pipeline.

Varying variables are required to have global scope, and must be declared outside of function bodies,
before their first use.
25 TheOpenGLShadingLanguage

O P E R A T O R S A N D E X P R E S S I O N S
5 OPERATORS AND EXPRESSIONS 45
5.1 Operators

The OpenGL Shading Language has the following operators. Those marked reserved are illegal.

There is no address-of operator nor a dereference operator. There is no typecast operator, constructors are
used instead.

Precedence Operator class Operators Associativity

1 (highest) parenthetical grouping () NA

2 array subscript
function call and constructor
structure field selector, swizzler
post fix increment and decrement

[]
()
.
++ --

Left to Right

3 prefix increment and decrement
unary (tilde is reserved)

++ --
+ - ~ !

Right to Left

4 multiplicative (modulus reserved) * / % Left to Right

5 additive + - Left to Right

6 bit-wise shift (reserved) << >> Left to Right

7 relational < > <= >= Left to Right

8 equality == != Left to Right

9 bit-wise and (reserved) & Left to Right

10 bit-wise exclusive or (reserved) ^ Left to Right

11 bit-wise inclusive or (reserved) | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or | | Left to Right

15 selection ? : Right to Left

16 assignment
arithmetic assignments
(modulus, shift, and bit-wise are
reserved)

=
+= -=
*= /= %=
<<= >>=
&= ^= |=

Right to Left

17 (lowest) sequence , Left to Right
The OpenGL Shading Language 26

O P E R A T O R S A N D E X P R E S S I O N S
5.2 Array Subscript ing

Array elements are accessed using the array subscript operator ([]). This is the only operator that
operates on arrays. An example of accessing an array element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Arrays elements are accessed using an expression whose type is an integer.

Behavior is undefined if a shader subscripts an array with an index less than 0 or greater than or equal to
the size the array was declared with.

5.3 Funct ion Cal ls

If a function returns a value, then a call to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in Section 6.1 “Function Definitions”.

5.4 Constructors

Constructors use the function call syntax, where the function name is a basic-type keyword or structure
name, to make values of the desired type for use in an initializer or an expression. (See Section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

There is no fixed list of constructor prototypes. Constructors are not built-in functions. Syntactically, all
lexically correct parameter lists are valid. Semantically, the number of parameters must be of sufficient
size and correct type to perform the initialization. It is an error to include so many arguments to a
constructor that they cannot all be used. Detailed rules follow. The prototypes actually listed below are
merely a subset of examples.

5.4.1 Conversion and Scalar Constructors

Converting between scalar types is done as the following prototypes indicate:

int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
float(bool) // converts a Boolean value to a float
float(int) // converts an integer value to a float
bool(float) // converts a float value to a Boolean
bool(int) // converts an integer value to a Boolean

When constructors are used to convert a float to an int, the fractional part of the floating-point value is
dropped.
27 TheOpenGLShadingLanguage

O P E R A T O R S A N D E X P R E S S I O N S
When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to false, and non-
zero values are converted to true. When a constructor is used to convert a bool to an int or float, false is
converted to 0 or 0.0, and true is converted to 1 or 1.0.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

5.4.2 Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized
to 0.0. If there are non-scalar parameters, and/or multiple scalar parameters, they will be assigned in
order, from left to right, to the components of the constructed value. In this case, there must be enough
components provided in the parameters to provide an initializer for every component in the constructed
value. If more components are provided in the last used argument to a constructor than are needed to
initialize the constructed value, the left most components of that argument are used, and the remaining
ones are ignored. It is an error to provide extra arguments beyond this last used argument. Matrices will
be constructed in column major order. It is an error to construct matrices from other matrices. This is
reserved for future use.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of the
object being constructed, the scalar construction rules (above) are used to convert the parameters.

Some useful vector constructors are as follows:

vec3(float) // initializes each component of a vec3 with the float
vec4(ivec4) // makes a vec4 from an ivec4, with component-wise conversion

vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // initializes with 4 Boolean conversions

vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0
The OpenGL Shading Language 28

O P E R A T O R S A N D E X P R E S S I O N S
vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

To initialize a matrix by specifying vectors, or by all 4, 9, or 16 floats for mat2, mat3 and mat4
respectively. The floats are assigned to elements in column major order.

mat2(vec2, vec2);
mat3(vec3, vec3, vec3);
mat4(vec4, vec4, vec4, vec4);

mat2(float, float,
float, float);

mat3(float, float, float,
float, float, float,
float, float, float);

mat4(float, float, float, float,
float, float, float, float,
float, float, float, float,
float, float, float, float);

A wide range of other possibilities exist, as long as enough components are present to initialize the matrix.
However, construction of a matrix from other matrices is currently reserved for future use.

5.4.3 Structure Constructors

Once a structure is defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
float intensity;
vec3 position;

};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

The arguments to the constructor must be in the same order and of the same type as they were declared in
the structure.

Structure constructors can be used as initializers or in expressions.

5.5 Vector Components

The names of the components of a vector are denoted by a single letter. As a notational convenience,
several letters are associated with each component based on common usage of position, color or texture
29 TheOpenGLShadingLanguage

O P E R A T O R S A N D E X P R E S S I O N S
coordinate vectors. The individual components of a vector can be selected by following the variable
name with period (.) and then the component name.

The component names supported are:

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.

Note that the third component of a texture, r in OpenGL, has been renamed p so as to avoid the confusion
with r (for red) in a color.

Accessing components beyond those declared for the vector type is an error so, for example:

vec2 pos;
pos.x // is legal
pos.z // is illegal

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from

// the same set.

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0);// illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must be applied to an l-value of vector type, contain no duplicate
components, and results in an l-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors to provide numeric indexing. So in

{x, y, z, w} useful when accessing vectors that represent points or normals
{r, g, b, a} useful when accessing vectors that represent colors
{s, t, p, q} useful when accessing vectors that represent texture coordinates
The OpenGL Shading Language 30

O P E R A T O R S A N D E X P R E S S I O N S
vec4 pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, as well as a generic way of accessing components. Any integer expression can be used as the
subscript. The first component is at index zero. Behavior is undefined if the index is greater than or equal
to the size of the vector.

5.6 Matr ix Components

The components of a matrix can be accessed using array subscripting syntax. Applying a single subscript
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a
vector of the same size as the matrix. The leftmost column is column 0. A second subscript would then
operate on the column vector, as defined earlier for vectors. Hence, two subscripts select a column and
then a row.

mat4 m;
m[1] = vec4(2.0); // sets the second column to all 2.0
m[0][0] = 1.0; // sets the upper left element to 1.0
m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix (e.g., component
[3][3] of a mat3).

5.7 Structures and Fie lds

As with vector components and swizzling, the fields of a structure are also selected using the period (.).

In total, the following operators are allowed to operate on a structure:

The equality and assignment operators are only valid if the two operands’ types are of the same declared
structure. When using the equality operators, two structures are equal if and only if all the fields are
component-wise equal.

5.8 Assignments

Assignments of values to variable names are done with the assignment operator (=), like

lvalue = expression

The assignment operator stores the value of expression into lvalue. It will compile only if expression and
lvalue have the same type. All desired type-conversions must be specified explicitly via a constructor. L-

structure field selector .

equality == !=

assignment =
31 TheOpenGLShadingLanguage

O P E R A T O R S A N D E X P R E S S I O N S
values must be writable. Variables that are built-in types, entire structures, structure fields, l-values with
the field selector (.) applied to select components or swizzles without repeated fields, and l-values
dereferenced with the array subscript operator ([]) are all l-values. Other binary or unary expressions,
non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot be l-values.
The ternary operator (?:) is also not allowed as an l-value.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.
Other assignment operators are

• The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide
into (/=). The expression

lvalue op= expression

is equivalent to

lvalue = lvalue op expression

and the l-value and expression must satisfy the semantic requirements of both op and equals
(=).

• The assignments modulus into (%=), left shift by (<<=), right shift by (>>=), inclusive or
into (|=), and exclusive or into (^=). These operators are reserved for future use.

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

5.9 Express ions

Expressions in the shading language are built from the following:

• Constants of type bool, int, float, all vector types, and all matrix types.
• Constructors of all types.
• Variable names of all types, except array names not followed by a subscript.
• Subscripted array names.
• Function calls that return values.
• Component field selectors and array subscript results.
• Parenthesized expression. Parentheses can be used to group operations. Operations within

parentheses are done before operations across parentheses.
• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that

operate on integer and floating-point typed expressions (including vectors and matrices).
The two operands must be the same type, or one can be a scalar float and the other a float
vector or matrix, or one can be a scalar integer and the other an integer vector. Additionally,
for multiply (*), one can be a vector and the other a matrix with the same dimensional size
of the vector. These result in the same fundamental type (integer or float) as the expressions
they operate on. If one operand is scalar and the other is a vector or matrix, the scalar is
applied component-wise to the vector or matrix, resulting in the same type as the vector or
matrix. Dividing by zero does not cause an exception but does result in an unspecified
The OpenGL Shading Language 32

O P E R A T O R S A N D E X P R E S S I O N S
value. Multiply (*) applied to two vectors yields a component-wise multiply. Multiply (*)
applied to two matrices yields a linear algebraic matrix multiply, not a component-wise
multiply. Use the built-in functions dot, cross, and matrixCompMult to get, respectively,
vector dot product, vector cross product, and matrix component-wise multiplication.

• The operator modulus (%) is reserved for future use.
• The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and

++) that operate on integer or floating-point values (including vectors and matrices). These
result with the same type they operated on. For post- and pre-increment and decrement, the
expression must be one that could be assigned to (an l-value). Pre-increment and pre-
decrement add or subtract 1 or 1.0 to the contents of the expression they operate on, and the
value of the pre-increment or pre-decrement expression is the resulting value of that
modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to
the contents of the expression they operate on, but the resulting expression has the
expression’s value before the post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less
than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The
result is scalar Boolean. The operands’ types must match. To do component-wise
comparisons on vectors, use the built-in functions lessThan, lessThanEqual,
greaterThan, and greaterThanEqual.

• The equality operators equal (==), and not equal (!=) operate on all types except arrays.
They result in a scalar Boolean. For vectors, matrices, and structures, all components of the
operands must be equal for the operands to be considered equal. To get component-wise
equality results for vectors, use the built-in functions equal and notEqual.

• The logical binary operators and (&&), or (| |), and exclusive or (^^). They operate only
on two Boolean expressions and result in a Boolean expression. And (&&) will only
evaluate the right hand operand if the left hand operand evaluated to true. Or (| |) will only
evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or
(^^) will always evaluate both operands.

• The logical unary operator not (!). It operates only on a Boolean expression and results in a
Boolean expression. To operate on a vector, use the built-in function not.

• The sequence (,) operator that operates on expressions by returning the type and value of
the right-most expression in a comma separated list of expressions. All expressions are
evaluated, in order, from left to right.

• The ternary selection operator (?:). It operates on three expressions (exp1 ? exp2 : exp3).
This operator evaluates the first expression, which must result in a scalar Boolean. If the
result is true, it selects to evaluate the second expression, otherwise it selects to evaluate the
third expression. Only one of the second and third expressions is evaluated. The second
and third expressions must be the same type, but can be of any type other than an array. The
resulting type is the same as the type of the second and third expressions.

• Operators and (&), or (|), exclusive or (^), not (~), right-shift (>>), left-shift (<<). These
operators are reserved for future use.

For a complete specification of the syntax of expressions, see Section 9 “Shading Language Grammar”.

When the operands are of a different type they must fit into one of the following rules:
33 TheOpenGLShadingLanguage

O P E R A T O R S A N D E X P R E S S I O N S
• one of the arguments is a float (i.e. a scalar), in which case the result is as if the scalar value
was replicated into a vector or matrix before being applied.

• the left argument is a floating-point vector and the right is a matrix with a compatible
dimension in which case the * operator will do a row vector matrix multiplication.

• the left argument is a matrix and the right is a floating-point vector with a compatible
dimension in which case the * operator will do a column vector matrix multiplication.

5.10 Vector and Matr ix Operat ions

With a few exceptions, operations are component-wise. When an operator operates on a vector or matrix,
it is operating independently on each component of the vector or matrix, in a component-wise fashion.
For example,

vec3 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;
w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply. They require the
size of the operands match.

vec3 v, u;
mat3 m;

u = v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);
The OpenGL Shading Language 34

O P E R A T O R S A N D E X P R E S S I O N S
And

u = m * v;

is equivalent to

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

And

mat m, n, r;

r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;
r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

and similarly for vectors and matrices of size 2 and 4.

All unary operations work component-wise on their operands. For binary arithmetic operations, if the two
operands are the same type, then the operation is done component-wise and produces a result that is the
same type as the operands. If one operand is a scalar float and the other operand is a vector or matrix, then
the operation proceeds as if the scalar value was replicated to form a matching vector or matrix operand.
35 TheOpenGLShadingLanguage

ST A T E M E N T S A N D ST R U C T U R E
6 STATEMENTS AND STRUCTURE 56
The fundamental building blocks of the OpenGL Shading Language are:

• statements and declarations
• function definitions
• selection (if-else)
• iteration (for, while, and do-while)
• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit:
global-declaration
translation-unit global-declaration

global-declaration:
function-definition
declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition:
function-prototype { statement-list }

statement-list:
statement
statement-list statement

statement:
compound-statement
simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:
{ statement-list }

simple-statement:
declaration-statement
expression-statement
selection-statement
iteration-statement
jump-statement
The OpenGL Shading Language 36

ST A T E M E N T S A N D ST R U C T U R E
Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in Section 9 “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1 Funct ion Def in i t ions

As indicated by the grammar above, a valid shader is a sequence of global declarations and function
definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{

// do some computation
return returnValue;

}

Where returnType must be present and include a type. Each of the typeN must include a type and can
optionally include the qualifier in, out, inout, and/or const.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments, but not as the return type. When arrays are declared as formal
parameters, their size must be included. An array is passed to a function by using the array name without
any subscripting or brackets, and the size of the array argument passed in must match the size specified in
the formal parameter declaration.

Structures are also allowed as arguments. The return type can also be structure.

See Section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with a body before they are called. For
example:

float myfunc (float f, // f is an input parameter
out float g); // g is an output parameter

Functions that return no value must be declared as void. Functions that accept no input arguments need
not use void in the argument list because prototypes are required and therefore there is no ambiguity when
an empty argument list "()" is declared. The idiom “(void)” as a parameter list is provided for
convenience.
37 TheOpenGLShadingLanguage

ST A T E M E N T S A N D ST R U C T U R E
Function names can be overloaded. This allows the same function name to be used for multiple functions,
as long as the argument list types differ. If functions’ names and argument types match, then their return
type and parameter qualifiers must also match. Overloading is used heavily in the built-in functions.
When overloaded functions (or indeed any functions) are resolved, an exact match for the function's
signature is sought. This includes exact match of array size as well. No promotion or demotion of the
return type or input argument types is done. All expected combination of inputs and outputs must be
defined as separate functions.

For example, the built-in dot product function has the following prototypes:

float dot (float x, float y);
float dot (vec2 x, vec2 y);
float dot (vec3 x, vec3 y);
float dot (vec4 x, vec4 y);

User-defined functions can have multiple declarations, but only one definition. A shader can redefine
built-in functions. If a built-in function is redeclared in a shader (i.e. a prototype is visible) before a call to
it, then the linker will only attempt to resolve that call within the set shaders that are linked with it.

The function main is used as the entry point to a shader. A shader need not contain a function named
main, but one shader in a set of shaders linked together to form a single program must. This function
takes no arguments, returns no value, and must be declared as type void:

void main()
{

...
}

The function main can contain uses of return. See Section 6.4 “Jumps” for more details.

6.1.1 Function Calling Conventions

Functions are called by value-return. This means input arguments are copied into the function at call
time, and output arguments are copied back to the caller before function exit. Because the function works
with local copies of parameters, there are no issues regarding aliasing of variables within a function. At
call time, input arguments are evaluated in order, from left to right. However, the order in which output
parameters are copied back to the caller is undefined. To control what parameters are copied in and/or out
through a function definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied
out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not
copied in. This should be used whenever possible to avoid unnecessarily copying
parameters in.

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and
copied out.

• A function parameter declared with no such qualifier means the same thing as specifying in.
The OpenGL Shading Language 38

ST A T E M E N T S A N D ST R U C T U R E
In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters
declared as out or inout.

No qualifier is allowed on the return type of a function.

function-prototype :
type function-name(const-qualifier parameter-qualifier type name array-specifier, ...)

type :
any basic type, structure name, or structure definition

const-qualifier :
empty
const

parameter-qualifier :
empty
in
out
inout

name :
empty
identifier

array-specifier :
empty
[integral-constant-expression]

However, the const qualifier cannot be used with out or inout. The above is used for function
declarations (i.e. prototypes) and for function definitions. Hence, function definitions can have unnamed
arguments.

Behavior is undefined if recursion is used. Recursion means having any function appearing more than
once at any one time in the run-time stack of function calls. That is, a function may not call itself either
directly or indirectly. Compilers may give diagnostic messages when this is detectable at compile time,
but not all such cases can be detected at compile time.

6.2 Select ion

Conditional control flow in the shading language is done by either if, or if-else:

if (bool-expression)
true-statement

or

if (bool-expression)
true-statement

else
39 TheOpenGLShadingLanguage

ST A T E M E N T S A N D ST R U C T U R E
false-statement

If the expression evaluates to true, then true-statement is executed. If it evaluates to false and there is an
else part then false-statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

6.3 I tera t ion

For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
sub-statement

while (condition-expression)
sub-statement

do
statement

while (condition-expression)

See Section 9 “Shading Language Grammar” for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. If the condition-expression
evaluates to true, then the body of the loop is executed. After the body is executed, a for loop will then
evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating until the
condition-expression evaluates to false. The loop is then exited, skipping its body and skipping its loop-
expression. Variables modified by the loop-expression maintain their value after the loop is exited,
provided they are still in scope. Variables declared in init-expression or condition-expression are only in
scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is then
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

The do-while loop first executes the body, then executes the condition-expression. This is repeated until
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the
do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope lasts
only until the end of the sub-statement that forms the body of the loop.

Loops can be nested.
The OpenGL Shading Language 40

ST A T E M E N T S A N D ST R U C T U R E
Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

6.4 Jumps

These are the jumps:

jump_statement:
continue;
break;
return;
return expression;
discard; // in the fragment shader language only

There is no “goto” nor other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the inner most loop of
which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop condition-
expression from which the loop continues as previously defined. For for loops, the jump is to the loop-
expression, followed by the condition-expression.

The break jump can also be used only in loops. It is simply an immediate exit of the inner-most loop
containing the break. No further execution of condition-expression or loop-expression is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to any buffers will occur. It would typically be used within a conditional statement, for example:

if (intensity < 0.0)
discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the return
value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in a fragment shader. Using return in
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.
41 TheOpenGLShadingLanguage

B U I L T - I N VA R I A B L E S
7 BUILT-IN VARIABLES 67
7.1 Vertex Shader Specia l Var iables

Some OpenGL operations still continue to occur in fixed functionality in between the vertex processor
and the fragment processor. Other OpenGL operations continue to occur in fixed functionality after the
fragment processor. Shaders communicate with the fixed functionality of OpenGL through the use of
built-in variables.

The variable gl_Position is available only in the vertex language and is intended for writing the
homogeneous vertex position. All executions of a well-formed vertex shader must write a value into this
variable. It can be written at any time during shader execution. It may also be read back by the shader
after being written. This value will be used by primitive assembly, clipping, culling, and other fixed
functionality operations that operate on primitives after vertex processing has occurred. Compilers may
generate a diagnostic message if they detect gl_Position is not written, or read before being written, but
not all such cases are detectable. Results are undefined if a vertex shader is executed and does not write
gl_Position.

The variable gl_PointSize is available only in the vertex language and is intended for a vertex shader to
write the size of the point to be rasterized. It is measured in pixels.

The variable gl_ClipVertex is available only in the vertex language and provides a place for vertex shaders
to write the coordinate to be used with the user clipping planes. The user must ensure the clip vertex and
user clipping planes are defined in the same coordinate space. User clip planes work properly only under
linear transform. It is undefined what happens under non-linear transform.

These built-in vertex shader variables for communicating with fixed functionality are intrinsically
declared with the following types:

vec4 gl_Position; // must be written to
float gl_PointSize; // may be written to
vec4 gl_ClipVertex; // may be written to

If gl_PointSize or gl_ClipVertex are not written to, their values are undefined. Any of these variables can
be read back by the shader after writing to them, to retrieve what was written. Reading them before
writing them results in undefined behavior. If they are written more than once, it is the last value written
that is consumed by the subsequent operations.

These built-in variables have global scope.
The OpenGL Shading Language 42

B U I L T - I N VA R I A B L E S
7.2 Fragment Shader Spec ia l Var iables

The output of the fragment shader is processed by the fixed function operations at the back end of the
OpenGL pipeline. Fragment shaders output values to the OpenGL pipeline using the built-in variables
gl_FragColor, gl_FragData, and gl_FragDepth, unless the discard keyword is executed.

These variables may be written more than once within a fragment shader. If so, the last value assigned is
the one used in the subsequent fixed function pipeline. The values written to these variables may be read
back after writing them. Reading from these variables before writing them results in an undefined value.
The fixed functionality computed depth for a fragment may be obtained by reading gl_FragCoord.z,
described below.

Writing to gl_FragColor specifies the fragment color that will be used by the subsequent fixed
functionality pipeline. If subsequent fixed functionality consumes fragment color and an execution of a
fragment shader does not write a value to gl_FragColor then the fragment color consumed is undefined.

If the frame buffer is configured as a color index buffer then behavior is undefined when using a fragment
shader.

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and a shader does not write gl_FragDepth, then the fixed function value for depth
will be used as the fragment’s depth value. If a shader statically assigns a value to gl_FragDepth, and
there is an execution path through the shader that does not set gl_FragDepth, then the value of the
fragment’s depth may be undefined for executions of the shader that take that path. That is, if a shader
statically contains a write to gl_FragDepth, then it is responsible for always writing it.

(A shader contains a static assignment to a variable x if, after pre-processing, the shader contains a
statement that would write to x, whether or not run-time flow of control will cause that statement to be
executed.)

The variable gl_FragData is an array. Writing to gl_FragData[n] specifies the fragment data that will be
used by the subsequent fixed functionality pipeline for data n. If subsequent fixed functionality consumes
fragment data and an execution of a fragment shader does not write a value to it, then the fragment data
consumed is undefined.

If a shader statically assigns a value to gl_FragColor, it may not assign a value to any element of
gl_FragData. If a shader statically writes a value to any element of gl_FragData, it may not assign a
value to gl_FragColor. That is, a shader may assign values to either gl_FragColor or gl_FragData, but
not both.

If a shader executes the discard keyword, the fragment is discarded, and the values of gl_FragDepth,
gl_FragColor, and gl_FragData become irrelevant.

The variable gl_FragCoord is available as a read-only variable from within fragment shaders and it holds
the window relative coordinates x, y, z, and 1/w values for the fragment. This value is the result of the
fixed functionality that interpolates primitives after vertex processing to generate fragments. The z
component is the depth value that would be used for the fragment’s depth if a shader contained no writes
to gl_FragDepth. This is useful for invariance if a shader conditionally computes gl_FragDepth but
otherwise wants the fixed functionality fragment depth.
43 TheOpenGLShadingLanguage

B U I L T - I N VA R I A B L E S
The fragment shader has access to the read-only built-in variable gl_FrontFacing whose value is true if
the fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by
selecting one of two colors calculated by the vertex shader.

The built-in variables that are accessible from a fragment shader are intrinsically given types as follows:

vec4 gl_FragCoord;
bool gl_FrontFacing;
vec4 gl_FragColor;
vec4 gl_FragData[gl_MaxDrawBuffers];
float gl_FragDepth;

However, they do not behave like variables with no qualifier; their behavior is as described above. These
built-in variables have global scope.

7.3 Vertex Shader Bui l t - In At t r ibutes

The following attribute names are built into the OpenGL vertex language and can be used from within a
vertex shader to access the current values of attributes declared by OpenGL. All page numbers and
notations are references to the OpenGL 1.4 specification.

//
// Vertex Attributes, p. 19.
//
attribute vec4 gl_Color;
attribute vec4 gl_SecondaryColor;
attribute vec3 gl_Normal;
attribute vec4 gl_Vertex;
attribute vec4 gl_MultiTexCoord0;
attribute vec4 gl_MultiTexCoord1;
attribute vec4 gl_MultiTexCoord2;
attribute vec4 gl_MultiTexCoord3;
attribute vec4 gl_MultiTexCoord4;
attribute vec4 gl_MultiTexCoord5;
attribute vec4 gl_MultiTexCoord6;
attribute vec4 gl_MultiTexCoord7;
attribute float gl_FogCoord;

7.4 Bui l t - In Constants

The following built-in constants are provided to vertex and fragment shaders.

//
// Implementation dependent constants. The example values below
// are the minimum values allowed for these maximums.
//
const int gl_MaxLights = 8; // GL 1.0
const int gl_MaxClipPlanes = 6; // GL 1.0
const int gl_MaxTextureUnits = 2; // GL 1.3
const int gl_MaxTextureCoords = 2; // ARB_fragment_program
const int gl_MaxVertexAttribs = 16; // ARB_vertex_shader
The OpenGL Shading Language 44

B U I L T - I N VA R I A B L E S
const int gl_MaxVertexUniformComponents = 512; // ARB_vertex_shader
const int gl_MaxVaryingFloats = 32; // ARB_vertex_shader
const int gl_MaxVertexTextureImageUnits = 0; // ARB_vertex_shader
const int gl_MaxCombinedTextureImageUnits = 2; // ARB_vertex_shader
const int gl_MaxTextureImageUnits = 2; // ARB_fragment_shader
const int gl_MaxFragmentUniformComponents = 64;// ARB_fragment_shader
const int gl_MaxDrawBuffers = 1; // proposed ARB_draw_buffers

7.5 Bui l t - In Uniform State

As an aid to accessing OpenGL processing state, the following uniform variables are built into the
OpenGL Shading Language. All page numbers and notations are references to the 1.4 specification.

//
// Matrix state. p. 31, 32, 37, 39, 40.
//
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

//
// Derived matrix state that provides inverse and transposed versions
// of the matrices above. Poorly conditioned matrices may result
// in unpredictable values in their inverse forms.
//
uniform mat3 gl_NormalMatrix; // transpose of the inverse of the

// upper leftmost 3x3 of gl_ModelViewMatrix

uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
uniform mat4 gl_ModelViewProjectionMatrixInverse;
uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];

uniform mat4 gl_ModelViewMatrixTranspose;
uniform mat4 gl_ProjectionMatrixTranspose;
uniform mat4 gl_ModelViewProjectionMatrixTranspose;
uniform mat4 gl_TextureMatrixTranspose[gl_MaxTextureCoords];

uniform mat4 gl_ModelViewMatrixInverseTranspose;
uniform mat4 gl_ProjectionMatrixInverseTranspose;
uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];

//
// Normal scaling p. 39.
//
uniform float gl_NormalScale;

//
45 TheOpenGLShadingLanguage

B U I L T - I N VA R I A B L E S
// Depth range in window coordinates, p. 33
//
struct gl_DepthRangeParameters {

float near; // n
float far; // f
float diff; // f - n

};
uniform gl_DepthRangeParameters gl_DepthRange;

//
// Clip planes p. 42.
//
uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];

//
// Point Size, p. 66, 67.
//
struct gl_PointParameters {

float size;
float sizeMin;
float sizeMax;
float fadeThresholdSize;
float distanceConstantAttenuation;
float distanceLinearAttenuation;
float distanceQuadraticAttenuation;

};

uniform gl_PointParameters gl_Point;

//
// Material State p. 50, 55.
//
struct gl_MaterialParameters {

vec4 emission; // Ecm
vec4 ambient; // Acm
vec4 diffuse; // Dcm
vec4 specular; // Scm
float shininess; // Srm

};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

//
// Light State p 50, 53, 55.
//

struct gl_LightSourceParameters {
vec4 ambient; // Acli
vec4 diffuse; // Dcli
vec4 specular; // Scli
vec4 position; // Ppli
vec4 halfVector; // Derived: Hi
The OpenGL Shading Language 46

B U I L T - I N VA R I A B L E S
vec3 spotDirection; // Sdli
float spotExponent; // Srli
float spotCutoff; // Crli

// (range: [0.0,90.0], 180.0)
float spotCosCutoff; // Derived: cos(Crli)

// (range: [1.0,0.0],-1.0)
float constantAttenuation; // K0
float linearAttenuation; // K1
float quadraticAttenuation;// K2

};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

struct gl_LightModelParameters {
vec4 ambient; // Acs

};

uniform gl_LightModelParameters gl_LightModel;

//
// Derived state from products of light and material.
//

struct gl_LightModelProducts {
vec4 sceneColor; // Derived. Ecm + Acm * Acs

};

uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;

struct gl_LightProducts {
vec4 ambient; // Acm * Acli
vec4 diffuse; // Dcm * Dcli
vec4 specular; // Scm * Scli

};

uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

//
// Texture Environment and Generation, p. 152, p. 40-42.
//
uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits];
uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];
47 TheOpenGLShadingLanguage

B U I L T - I N VA R I A B L E S
//
// Fog p. 161
//
struct gl_FogParameters {

vec4 color;
float density;
float start;
float end;
float scale; // Derived: 1.0 / (end - start)

};

uniform gl_FogParameters gl_Fog;

7.6 Vary ing Variables

Unlike user-defined varying variables, the built-in varying variables don’t have a strict one-to-one
correspondence between the vertex language and the fragment language. Two sets are provided, one for
each language. Their relationship is described below.

The following built-in varying variables are available to write to in a vertex shader. A particular one
should be written to if any functionality in a corresponding fragment shader or fixed pipeline uses it or
state derived from it. Otherwise, behavior is undefined.

varying vec4 gl_FrontColor;
varying vec4 gl_BackColor;
varying vec4 gl_FrontSecondaryColor;
varying vec4 gl_BackSecondaryColor;
varying vec4 gl_TexCoord[]; // at most will be gl_MaxTextureCoords
varying float gl_FogFragCoord;

For gl_FogFragCoord, the value written will be used as the “c” value on page 160 of the OpenGL 1.4
Specification by the fixed functionality pipeline. For example, if the z-coordinate of the fragment in eye
space is desired as “c”, then that's what the vertex shader should write into gl_FogFragCoord.

As with all arrays, indices used to subscript gl_TexCoord must either be an integral constant expressions,
or this array must be re-declared by the shader with a size. The size can be at most gl_MaxTextureCoords.
Using indexes close to 0 may aid the implementation in preserving varying resources.

The following varying variables are available to read from in a fragment shader. The gl_Color and
gl_SecondaryColor names are the same names as attributes passed to the vertex shader. However, there is
no name conflict, because attributes are visible only in vertex shaders and the following are only visible in
a fragment shader.

varying vec4 gl_Color;
varying vec4 gl_SecondaryColor;
varying vec4 gl_TexCoord[]; // at most will be gl_MaxTextureCoords
varying float gl_FogFragCoord;

The values in gl_Color and gl_SecondaryColor will be derived automatically by the system from
gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor based on which
face is visible. If fixed functionality is used for vertex processing, then gl_FogFragCoord will either be
The OpenGL Shading Language 48

B U I L T - I N VA R I A B L E S
the z-coordinate of the fragment in eye space, or the interpolation of the fog coordinate, as described in
section 3.10 of the OpenGL 1.4 Specification. The gl_TexCoord[] values are the interpolated
gl_TexCoord[] values from a vertex shader or the texture coordinates of any fixed pipeline based vertex
functionality.

Indices to the fragment shader gl_TexCoord array are as described above in the vertex shader text.
49 TheOpenGLShadingLanguage

B U I L T - I N F U N C T I O N S
8 BUILT-IN FUNCTIONS 78
The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing
a texture map. There is no way in the language for these functions to be emulated by a
shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write,
but they are very common and may have direct hardware support. It is a very hard problem
for the compiler to map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point. The
trigonometry functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent
computations in their own shader code since the built-in functions are assumed to be optimal (e.g.,
perhaps supported directly in hardware).

User code can replace built-in functions with their own if they choose, by simply re-declaring and
defining the same name and argument list.

When the built-in functions are specified below, where the input arguments (and corresponding output)
can be float, vec2, vec3, or vec4, genType is used as the argument. For any specific use of a function, the
actual type has to be the same for all arguments and for the return type. Similarly for mat, which can be a
mat2, mat3, or mat4.
The OpenGL Shading Language 50

B U I L T - I N F U N C T I O N S
8.1 Angle and Tr igonometry Functions

Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genType radians (genType degrees) Converts degrees to radians and returns the
result, i.e., result = π/180 ⋅ degrees.

genType degrees (genType radians) Converts radians to degrees and returns the
result, i.e., result = 180/π⋅ radians.

genType sin (genType angle) The standard trigonometric sine function.

genType cos (genType angle) The standard trigonometric cosine function.

genType tan (genType angle) The standard trigonometric tangent.

genType asin (genType x) Arc sine. Returns an angle whose sine is x. The
range of values returned by this function is
[–π/2, π/2]. Results are undefined if |x| > 1.

genType acos (genType x) Arc cosine. Returns an angle whose cosine is x.
The range of values returned by this function is
[0, π]. Results are undefined if |x| > 1.

genType atan (genType y, genType x) Arc tangent. Returns an angle whose tangent is
y/x. The signs of x and y are used to determine
what quadrant the angle is in. The range of
values returned by this function is [–π, π].
Results are undefined if x and y are both 0.

genType atan (genType y_over_x) Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this
function is [–π/2, π/2].
51 TheOpenGLShadingLanguage

B U I L T - I N F U N C T I O N S
8.2 Exponent ia l Funct ions

These all operate component-wise. The description is per component.

8.3 Common Functions

These all operate component-wise. The description is per component.

Syntax Description

genType pow (genType x, genType y) Returns x raised to the y power, i.e., xy.
Results are undefined if x < 0.
Results are undefined if x = 0 and y <= 0.

genType exp (genType x) Returns the natural exponentiation of x, i.e., ex.

genType log (genType x) Returns the natural logarithm of x, i.e., returns
the value y which satisfies the equation x = ey.
Results are undefined if x <= 0.

genType exp2 (genType x) Returns 2 raised to the x power, i.e., 2x.

genType log2 (genType x) Returns the base 2 logarithm of x, i.e., returns the
value y which satisfies the equation x = 2y.
Results are undefined if x <= 0.

genType sqrt (genType x) Returns the positive square root of x.
Results are undefined if x < 0.

genType inversesqrt (genType x) Returns the reciprocal of the positive square root
of x.
Results are undefined if x <= 0.

Syntax Description

genType abs (genType x) Returns x if x >= 0, otherwise it returns –x

genType sign (genType x) Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0

genType floor (genType x) Returns a value equal to the nearest integer that is
less than or equal to x
The OpenGL Shading Language 52

B U I L T - I N F U N C T I O N S
genType ceil (genType x) Returns a value equal to the nearest integer that is
greater than or equal to x

genType fract (genType x) Returns x – floor (x)

genType mod (genType x, float y) Modulus. Returns x – y ∗ floor (x/y)

genType mod (genType x, genType y) Modulus. Returns x – y ∗ floor (x/y)

genType min (genType x, genType y)
genType min (genType x, float y)

Returns y if y < x, otherwise it returns x

genType max (genType x, genType y)
genType max (genType x, float y)

Returns y if x < y, otherwise it returns x

genType clamp (genType x,
genType minVal,
genType maxVal)

genType clamp (genType x,
float minVal,
float maxVal)

Returns min (max (x, minVal), maxVal)
Note that colors and depths written by fragment
shaders will be clamped by the implementation
after the fragment shader runs.

genType mix (genType x,
genType y,
genType a)

genType mix (genType x,
genType y,
float a)

Returns x ∗ (1 – a) + y ∗ a, i.e., the linear blend
of x and y

genType step (genType edge, genType x)
genType step (float edge, genType x)

Returns 0.0 if x < edge, otherwise it returns 1.0

genType smoothstep (genType edge0,
genType edge1,
genType x)

genType smoothstep (float edge0,
float edge1,
genType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1
and performs smooth Hermite interpolation
between 0 and 1 when edge0 < x < edge1. This is
useful in cases where you would want a threshold
function with a smooth transition. This is
equivalent to:

genType t;

t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);

return t * t * (3 – 2 * t);
53 TheOpenGLShadingLanguage

B U I L T - I N F U N C T I O N S
8.4 Geometr ic Funct ions

These operate on vectors as vectors, not component-wise.

Syntax Description

float length (genType x) Returns the length of vector x, i.e.,
sqrt (x[0] ∗ x[0] + x[1] ∗ x[1] + ...)

float distance (genType p0, genType p1) Returns the distance between p0 and p1, i.e.
length (p0 – p1)

float dot (genType x, genType y) Returns the dot product of x and y, i.e.,
result = x[0] ∗ y[0] + x[1] ∗ y[1] + ...

vec3 cross (vec3 x, vec3 y) Returns the cross product of x and y, i.e.
result.0 = x[1] ∗ y[2] - y[1] ∗ x[2]
result.1 = x[2] ∗ y[0] - y[2] ∗ x[0]
result.2 = x[0] ∗ y[1] - y[0] ∗ x[1]

genType normalize (genType x) Returns a vector in the same direction as x but
with a length of 1.

vec4 ftransform() For vertex shaders only. This function will
ensure that the incoming vertex value will be
transformed in a way that produces exactly the
same result as would be produced by OpenGL’s
fixed functionality transform. It is intended to be
used to compute gl_Position, e.g.,

gl_Position = ftransform()

This function should be used, for example, when
an application is rendering the same geometry in
separate passes, and one pass uses the fixed
functionality path to render and another pass uses
programmable shaders.

genType faceforward (genType N,
genType I,
genType Nref)

If dot (Nref, I) < 0 return N otherwise return –N
The OpenGL Shading Language 54

B U I L T - I N F U N C T I O N S
8.5 Matr ix Functions

8.6 Vector Rela t ional Funct ions

Relational and equality operators (<, <=, >, >=, ==, !=) are defined (or reserved) to produce scalar
Boolean results. For vector results, use the following built-in functions. Below, “bvec” is a placeholder
for one of bvec2, bvec3, or bvec4, “ivec” is a placeholder for one of ivec2, ivec3, or ivec4, and “vec” is a
placeholder for vec2, vec3, or vec4. In all cases, the sizes of the input and return vectors for any particular
call must match.

genType reflect (genType I, genType N) For the incident vector I and surface orientation
N, returns the reflection direction:
result = I – 2 ∗ dot(N, I) ∗ N
N must already be normalized in order to achieve
the desired result.

genType refract(genType I, genType N,
float eta)

For the incident vector I and surface normal N,
and the ratio of indices of refraction eta, return
the refraction vector. The returned result is
computed by

k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
if (k < 0.0)

result = genType(0.0)
else

result = eta * I - (eta * dot(N, I) + sqrt(k)) * N

The input parameters for the incident vector I and
the surface normal N must already be normalized
to get the desired results.

Syntax Description

mat matrixCompMult (mat x, mat y) Multiply matrix x by matrix y component-wise,
i.e., result[i][j] is the scalar product of x[i][j] and
y[i][j].

Note: to get linear algebraic matrix
multiplication, use the multiply operator (*).

Syntax Description

bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)

Returns the component-wise compare of x < y.
55 TheOpenGLShadingLanguage

B U I L T - I N F U N C T I O N S
8.7 Texture Lookup Funct ions

Texture lookup functions are available to both vertex and fragment shaders. However, level of detail is
not computed by fixed functionality for vertex shaders, so there are some differences in operation between
vertex and fragment texture lookups. The functions in the table below provide access to textures through
samplers, as set up through the OpenGL API. Texture properties such as size, pixel format, number of
dimensions, filtering method, number of mip-map levels, depth comparison, and so on are also defined by
OpenGL API calls. Such properties are taken into account as the texture is accessed via the built-in
functions defined below.

If a non-shadow texture call is made to a sampler that represents a depth texture with depth comparisons
turned on, then results are undefined. If a shadow texture call is made to a sampler that represents a depth
texture with depth comparisons turned off, then results are undefined. If a shadow texture call is made to
a sampler that does not represent a depth texture, then results are undefined.

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in a vertex shader. For a fragment shader, if bias is present, it is added to the calculated level of
detail prior to performing the texture access operation. If the bias parameter is not provided, then the
implementation automatically selects level of detail: For a texture that is not mip-mapped, the texture is

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec x, ivec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)

Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(bvec x, bvec y)

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x == y.

Returns the component-wise compare of x != y.

bool any(bvec x) Returns true if any component of x is true.

bool all(bvec x) Returns true only if all components of x are true.

bvec not(bvec x) Returns the component-wise logical complement
of x.
The OpenGL Shading Language 56

B U I L T - I N F U N C T I O N S
used directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the
implementation is used to do the texture lookup. If it is mip-mapped and running on the vertex shader,
then the base texture is used.

The built-ins suffixed with “Lod” are allowed only in a vertex shader. For the “Lod” functions, lod is
directly used as the level of detail.

Syntax Description

vec4 texture1D (sampler1D sampler,
float coord [, float bias])

vec4 texture1DProj (sampler1D sampler,
vec2 coord [, float bias])

vec4 texture1DProj (sampler1D sampler,
vec4 coord [, float bias])

vec4 texture1DLod (sampler1D sampler,
float coord, float lod)

vec4 texture1DProjLod (sampler1D sampler,
vec2 coord, float lod)

vec4 texture1DProjLod (sampler1D sampler,
vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 1D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate
coord.s is divided by the last component of
coord.

vec4 texture2D (sampler2D sampler,
vec2 coord [, float bias])

vec4 texture2DProj (sampler2D sampler,
vec3 coord [, float bias])

vec4 texture2DProj (sampler2D sampler,
vec4 coord [, float bias])

vec4 texture2DLod (sampler2D sampler,
vec2 coord, float lod)

vec4 texture2DProjLod (sampler2D sampler,
vec3 coord, float lod)

vec4 texture2DProjLod (sampler2D sampler,
vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 2D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate
(coord.s, coord.t) is divided by the last
component of coord. The third component
of coord is ignored for the vec4 coord
variant.

vec4 texture3D (sampler3D sampler,
vec3 coord [, float bias])

vec4 texture3DProj (sampler3D sampler,
vec4 coord [, float bias])

vec4 texture3DLod (sampler3D sampler,
vec3 coord, float lod)

vec4 texture3DProjLod (sampler3D sampler,
vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 3D texture currently
bound to sampler. For the projective
(“Proj”) versions, the texture coordinate is
divided by coord.q.
57 TheOpenGLShadingLanguage

B U I L T - I N F U N C T I O N S
8.8 Fragment Processing Funct ions

Fragment processing functions are only available in shaders intended for use on the fragment processor.

Derivatives may be computationally expensive and/or numerically unstable. Therefore, an OpenGL
implementation may approximate the true derivatives by using a fast but not entirely accurate derivative
computation.

The expected behavior of a derivative is specified using forward/backward differencing.

Forward differencing:

F(x+dx) - F(x) ~ dFdx(x) * dx 1a

dFdx(x) ~ (F(x+dx) - F(x)) / dx 1b

Backward differencing:

F(x-dx) - F(x) ~ -dFdx(x) * dx 2a

dFdx(x) ~ (F(x) - F(x-dx)) / dx 2b

vec4 textureCube (samplerCube sampler,
vec3 coord [, float bias])

vec4 textureCubeLod (samplerCube sampler,
vec3 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the cube map texture
currently bound to sampler. The direction
of coord is used to select which face to do a
2-dimensional texture lookup in, as
described in section 3.8.6 in version 1.4 of
the OpenGL specification.

vec4 shadow1D (sampler1DShadow sampler,
vec3 coord [, float bias])

vec4 shadow2D (sampler2DShadow sampler,
vec3 coord [, float bias])

vec4 shadow1DProj (sampler1DShadow sampler,
vec4 coord [, float bias])

vec4 shadow2DProj (sampler2DShadow sampler,
vec4 coord [, float bias])

vec4 shadow1DLod (sampler1DShadow sampler,
vec3 coord, float lod)

vec4 shadow2DLod (sampler2DShadow sampler,
vec3 coord, float lod)

vec4 shadow1DProjLod(sampler1DShadow sampler,
vec4 coord, float lod)

vec4 shadow2DProjLod(sampler2DShadow sampler,
vec4 coord, float lod)

Use texture coordinate coord to do a depth
comparison lookup on the depth texture
bound to sampler, as described in section
3.8.14 of version 1.4 of the OpenGL
specification. The 3rd component of coord
(coord.p) is used as the R value. The texture
bound to sampler must be a depth texture,
or results are undefined. For the projective
(“Proj”) version of each built-in, the texture
coordinate is divide by coord.q, giving a
depth value R of coord.p/coord.q. The
second component of coord is ignored for
the “1D” variants.
The OpenGL Shading Language 58

B U I L T - I N F U N C T I O N S
With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0 in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

A GL implementation may use the above or other methods to perform the calculation, subject to the
following conditions:

1) The method may use piecewise linear approximations. Such linear approximations imply that higher
order derivatives, dFdx(dFdx(x)) and above, are undefined.

2) The method may assume that the function evaluated is continuous. Therefore derivatives within the
body of a non-uniform conditional are undefined.

3) The method may differ per fragment, subject to the constraint that the method may vary by window
coordinates, not screen coordinates. The invariance requirement described in section 3.1 of the
OpenGL 1.4 specification is relaxed for derivative calculations, because the method may be a
function of fragment location.

Other properties that are desirable, but not required, are:

4) Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

5) Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(y))
and dFdy(dFdx(x)) are undefined.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 5.6 of the OpenGL 1.4 specification), allowing a user to make an image quality versus speed
tradeoff.
59 TheOpenGLShadingLanguage

B U I L T - I N F U N C T I O N S
8.9 Noise Functions

Noise functions are available to both fragment and vertex shaders. They are stochastic functions that can
be used to increase visual complexity. Values returned by the following noise functions give the
appearance of randomness, but are not truly random. The noise functions below are defined to have the
following characteristics:

• The return value(s) are always in the range [-1.0,1.0], and cover at least the range [-0.6,
0.6], with a gaussian-like distribution.

• The return value(s) have an overall average of 0.0
• They are repeatable, in that a particular input value will always produce the same return

value
• They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it

has the same statistical character)
• They have a statistical invariance under translation (i.e., no matter how the domain is

translated, it has the same statistical character)
• They typically give different results under translation.
• The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.

Syntax Description

genType dFdx (genType p) Returns the derivative in x using local
differencing for the input argument p.

genType dFdy (genType p) Returns the derivative in y using local
differencing for the input argument p.

These two functions are commonly used to estimate
the filter width used to anti-alias procedural
textures.We are assuming that the expression is being
evaluated in parallel on a SIMD array so that at any
given point in time the value of the function is known
at the grid points represented by the SIMD array.
Local differencing between SIMD array elements can
therefore be used to derive dFdx, dFdy, etc.

genType fwidth (genType p) Returns the sum of the absolute derivative in x
and y using local differencing for the input
argument p, i.e.:
return = abs (dFdx (p)) + abs (dFdy (p));
The OpenGL Shading Language 60

B U I L T - I N F U N C T I O N S
• They are C1 continuous everywhere (i.e., the first derivative is continuous)

Syntax Description

float noise1 (genType x) Returns a 1D noise value based on the input
value x.

vec2 noise2 (genType x) Returns a 2D noise value based on the input
value x.

vec3 noise3 (genType x) Returns a 3D noise value based on the input
value x.

vec4 noise4 (genType x) Returns a 4D noise value based on the input
value x.
61 TheOpenGLShadingLanguage

S H A D I N G L A N G U A G E G R A M M A R
9 SHADING LANGUAGE GRAMMAR 99
The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

ATTRIBUTE CONST BOOL FLOAT INT
BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4 IN OUT INOUT UNIFORM VARYING
SAMPLER1D SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2DSHADOW
STRUCT VOID WHILE

IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT BOOLCONSTANT
FIELD_SELECTION
LEFT_OP RIGHT_OP
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
SUB_ASSIGN

LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION

The following describes the grammar for the OpenGL Shading Language in terms of the above tokens.

variable_identifier:

IDENTIFIER

primary_expression:

variable_identifier

INTCONSTANT

FLOATCONSTANT

BOOLCONSTANT

LEFT_PAREN expression RIGHT_PAREN

postfix_expression:

primary_expression

postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET

function_call
The OpenGL Shading Language 62

S H A D I N G L A N G U A G E G R A M M A R
postfix_expression DOT FIELD_SELECTION

postfix_expression INC_OP

postfix_expression DEC_OP

integer_expression:

expression

function_call:

function_call_generic

function_call_generic:

function_call_header_with_parameters RIGHT_PAREN

function_call_header_no_parameters RIGHT_PAREN

function_call_header_no_parameters:

function_call_header VOID

function_call_header

function_call_header_with_parameters:

function_call_header assignment_expression

function_call_header_with_parameters COMMA assignment_expression

function_call_header:

function_identifier LEFT_PAREN

function_identifier:

constructor_identifier

IDENTIFIER

// Grammar Note: Constructors look like functions, but lexical anaylsis recognized most of them as key-
words.

constructor_identifier:

FLOAT

INT

BOOL
63 TheOpenGLShadingLanguage

S H A D I N G L A N G U A G E G R A M M A R
VEC2

VEC3

VEC4

BVEC2

BVEC3

BVEC4

IVEC2

IVEC3

IVEC4

MAT2

MAT3

MAT4

TYPE_NAME

unary_expression:

postfix_expression

INC_OP unary_expression

DEC_OP unary_expression

unary_operator unary_expression

// Grammar Note: No traditional style type casts.

unary_operator:

PLUS

DASH

BANG

TILDE // reserved

// Grammar Note: No '*' or '&' unary ops. Pointers are not supported.

multiplicative_expression:

unary_expression

multiplicative_expression STAR unary_expression

multiplicative_expression SLASH unary_expression

multiplicative_expression PERCENT unary_expression // reserved
The OpenGL Shading Language 64

S H A D I N G L A N G U A G E G R A M M A R
additive_expression:

multiplicative_expression

additive_expression PLUS multiplicative_expression

additive_expression DASH multiplicative_expression

shift_expression:

additive_expression

shift_expression LEFT_OP additive_expression // reserved

shift_expression RIGHT_OP additive_expression // reserved

relational_expression:

shift_expression

relational_expression LEFT_ANGLE shift_expression

relational_expression RIGHT_ANGLE shift_expression

relational_expression LE_OP shift_expression

relational_expression GE_OP shift_expression

equality_expression:

relational_expression

equality_expression EQ_OP relational_expression

equality_expression NE_OP relational_expression

and_expression:

equality_expression

and_expression AMPERSAND equality_expression // reserved

exclusive_or_expression:

and_expression

exclusive_or_expression CARET and_expression // reserved

inclusive_or_expression:

exclusive_or_expression

inclusive_or_expression VERTICAL_BAR exclusive_or_expression // reserved

logical_and_expression:

inclusive_or_expression
65 TheOpenGLShadingLanguage

S H A D I N G L A N G U A G E G R A M M A R
logical_and_expression AND_OP inclusive_or_expression

logical_xor_expression:

logical_and_expression

logical_xor_expression XOR_OP logical_and_expression

logical_or_expression:

logical_xor_expression

logical_or_expression OR_OP logical_xor_expression

conditional_expression:

logical_or_expression

logical_or_expression QUESTION expression COLON conditional_expression

assignment_expression:

conditional_expression

unary_expression assignment_operator assignment_expression

assignment_operator:

EQUAL

MUL_ASSIGN

DIV_ASSIGN

MOD_ASSIGN // reserved

ADD_ASSIGN

SUB_ASSIGN

LEFT_ASSIGN // reserved

RIGHT_ASSIGN // reserved

AND_ASSIGN // reserved

XOR_ASSIGN // reserved

OR_ASSIGN // reserved

expression:

assignment_expression

expression COMMA assignment_expression

constant_expression:
The OpenGL Shading Language 66

S H A D I N G L A N G U A G E G R A M M A R
conditional_expression

declaration:

function_prototype SEMICOLON

init_declarator_list SEMICOLON

function_prototype:

function_declarator RIGHT_PAREN

function_declarator:

function_header

function_header_with_parameters

function_header_with_parameters:

function_header parameter_declaration

function_header_with_parameters COMMA parameter_declaration

function_header:

fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator:

type_specifier IDENTIFIER

type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

parameter_declaration:

type_qualifier parameter_qualifier parameter_declarator

parameter_qualifier parameter_declarator

type_qualifier parameter_qualifier parameter_type_specifier

parameter_qualifier parameter_type_specifier

parameter_qualifier:

/* empty */

IN

OUT

INOUT
67 TheOpenGLShadingLanguage

S H A D I N G L A N G U A G E G R A M M A R
parameter_type_specifier:

type_specifier

type_specifier LEFT_BRACKET constant_expression RIGHT_BRACKET

init_declarator_list:

single_declaration

init_declarator_list COMMA IDENTIFIER

init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT_BRACKET

init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression
RIGHT_BRACKET

init_declarator_list COMMA IDENTIFIER EQUAL initializer

single_declaration:

fully_specified_type

fully_specified_type IDENTIFIER

fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET

fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

fully_specified_type IDENTIFIER EQUAL initializer

// Grammar Note: No 'enum', or 'typedef'.

fully_specified_type:

type_specifier

type_qualifier type_specifier

type_qualifier:

CONST

ATTRIBUTE // Vertex only.

VARYING

UNIFORM

type_specifier:

VOID

FLOAT

INT

BOOL
The OpenGL Shading Language 68

S H A D I N G L A N G U A G E G R A M M A R
VEC2

VEC3

VEC4

BVEC2

BVEC3

BVEC4

IVEC2

IVEC3

IVEC4

MAT2

MAT3

MAT4

SAMPLER1D

SAMPLER2D

SAMPLER3D

SAMPLERCUBE

SAMPLER1DSHADOW

SAMPLER2DSHADOW

struct_specifier

TYPE_NAME

struct_specifier:

STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE

STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list:

struct_declaration

struct_declaration_list struct_declaration

struct_declaration:

type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:

struct_declarator

struct_declarator_list COMMA struct_declarator
69 TheOpenGLShadingLanguage

S H A D I N G L A N G U A G E G R A M M A R
struct_declarator:

IDENTIFIER

IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

initializer:

assignment_expression

declaration_statement:

declaration

statement:

compound_statement

simple_statement

// Grammar Note: No labeled statements; 'goto' is not supported.

simple_statement:

declaration_statement

expression_statement

selection_statement

iteration_statement

jump_statement

compound_statement:

LEFT_BRACE RIGHT_BRACE

LEFT_BRACE statement_list RIGHT_BRACE

statement_no_new_scope:

compound_statement_no_new_scope

simple_statement

compound_statement_no_new_scope:

LEFT_BRACE RIGHT_BRACE

LEFT_BRACE statement_list RIGHT_BRACE

statement_list:
The OpenGL Shading Language 70

S H A D I N G L A N G U A G E G R A M M A R
statement

statement_list statement

expression_statement:

SEMICOLON

expression SEMICOLON

selection_statement:

IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement:

statement ELSE statement

statement

// Grammar Note: No 'switch'. Switch statements not supported.

condition:

expression

fully_specified_type IDENTIFIER EQUAL initializer

iteration_statement:

WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope

DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON

FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN statement_no_new_scope

for_init_statement:

expression_statement

declaration_statement

conditionopt:

condition

/* empty */

for_rest_statement:

conditionopt SEMICOLON

conditionopt SEMICOLON expression
71 TheOpenGLShadingLanguage

S H A D I N G L A N G U A G E G R A M M A R
jump_statement:

CONTINUE SEMICOLON

BREAK SEMICOLON

RETURN SEMICOLON

RETURN expression SEMICOLON

DISCARD SEMICOLON // Fragment shader only.

// Grammar Note: No 'goto'. Gotos are not supported.

translation_unit:

external_declaration

translation_unit external_declaration

external_declaration:

function_definition

declaration

function_definition:

function_prototype compound_statement_no_new_scope
The OpenGL Shading Language 72

I S S U E S
10 ISSUES
.

1) Should the programs that run on these programmable processors be called shaders or programs?

DISCUSSION: Shader fits in with common usage in RenderMan and DX8. There is some argument
that shading has connotations of being a color operation so doesn't fit with a vertex operation.
RenderMan doesn't make this distinction, nor does DX8. It seems wise to go along with the common
usage of shader as a general term for a program that operates on some part of a graphics pipeline.

RESOLVED on October 12, 2001: The term shader will be used.

Note: Shader is used to denote a single independent compilation unit. Program is used to denote a
set of shaders linked together.

CLOSED on September 10, 2002.

2) Should there be a separate programmable unit for doing the pixel transfer operations?

DISCUSSION: We originally had the concept of a separate pixel shader where the pixel and imaging
operations would be done. On further consideration it seemed very unlikely that anyone would
implement this as an independent functional unit but rather do them in the fragment shader behind the
scenes. OpenGL treats pixel and fragment operations as mutually exclusive so sharing one
processing unit is a natural implementation. Forcing an abstraction that differed from reality seemed
to be a hindrance apart from increasing the amount of work.

RESOLVED on October 12, 2001: No, the fragment processor will be used to process both geometry
and pixel data.

CLOSED on September 10, 2002.

3) Should shaders be allowed to subset the fixed functionality that they replace?

DISCUSSION: There would be a lot of complexity in defining the interfaces to allow subsetting. It
isn’t very difficult to write shaders that implement the whole of the graphics processing pipeline.

RESOLVED on October 12, 2001: No, shaders cannot subset the fixed functionality they are
replacing. If shaders want to change the lighting in some way then they have to do the other items as
well. It will be helpful to have example shaders that fully implement the OpenGL fixed functionality
pipeline.

CLOSED on September 10, 2002.

4) Should a higher level shading language be layered on top of OpenGL instead of being designed to fit
within OpenGL?

DISCUSSION: In the current design, the shading language is integrated into OpenGL and just
provides alternative methods to the state controlled pipeline outlined earlier. The Stanford approach
is to layer their shading language on top of OpenGL. This has some advantages and disadvantages
that will become apparent when the differences are examined.
73 TheOpenGLShadingLanguage

I S S U E S
The Stanford approach uses a higher abstraction level. This helps with writing some kinds of
programs where the abstractions match the problem domain. For example treating lights and surfaces
as abstract entities makes some 3D graphics operations easier, however OpenGL is now being used
for video and image processing where this abstraction is largely irrelevant. Similarly many games
have shunned lighting via traditional means and use textures (light maps) instead.

There is nothing in the language or bindings that prevent higher levels of abstractions from being
layered on top of a programmable OpenGL. We also wish to keep the overall abstraction level of
OpenGL at its current level.

The Stanford approach also provides for different computational frequencies. By having the higher
levels of abstraction where one program defines the current graphics operation in total allows the
compiler to separate out the parts that need to run at the primitive group level, primitive level, vertex
level and fragment level. The compiler can therefore generate the code to run on the CPU, vertex
processor and fragment processor as appropriate. This is obviously more complicated to implement
than having the programmer specify the programs to run on each part of the pipeline (although some
hints are still required by the Stanford language), although this does make the virtualization of the
hardware easier as the compiler has the overall view.

The major disadvantage of this is that it forces more intrusive changes to OpenGL to support the clear
delineation of the primitives, vertices and fragment operations. Many of the core OpenGL features
have been replaced or are not available and it is not possible to use the standard OpenGL
transformation and lighting operations with a custom fragment shader (or vice versa), or to allow one
vertex shader to drive multiple fragment shaders. An advantage of the current approach is that the
look and feel of OpenGL 1.4 is maintained and it allows a graceful mix and match approach during
the transition period from fixed functionality to full programmability.

This is not a criticism of the Stanford work, as they had no choice but to layer on top of OpenGL.

RESOLVED on October 12, 2001: The OpenGL Shading Language should be built into OpenGL,
and not layered on top. It is also noted that if this is not the case, OpenGL should still have a standard
shading language, so this document still remains. Hence, this issue is not one against this document
but one against the OpenGL API.

CLOSED on September 20, 2002, as moved to the API issues list.

5) Should the shading model be part of the fixed functionality fragment processing that is replaced by
the fragment processor?

DISCUSSION: The shading model selects between Gouraud and flat shading and this would seem
natural to have this as part of the functionality replaced by the fragment shader. Flat shading involves
knowledge of the primitive type (for the provoking vertex) and this doesn't really belong in the
fragment shader. The fragment shader can always assume the color is interpolated and the shading
model is flat then the set up calculations for the color gradients can set the gradients to zero.

RESOLVED on October 12, 2001: No, the shading model is not replaced by the programmable
functionality of the fragment processor.

CLOSED on September 10, 2002.

6) Is alpha testing programmable?

DISCUSSION: The fragment shader has a function to kill fragments so could do alpha-like testing,
however the OpenGL pipeline specifies that alpha testing should happen after coverage has modified
the alpha value. We do not want to do coverage in the fragment shader so the alpha test remains
The OpenGL Shading Language 74

I S S U E S
outside. If the user is happy to do alpha testing before coverage in their own programs then they can
do this.

RESOLVED on October 12, 2001: Yes, applications can do alpha testing in a fragment shader, with
the proviso that, when done in the fragment shader, it happens before the coverage computation.

CLOSED on September 10, 2002.

7) Is alpha blending programmable?

Fragment shaders can read the contents of the frame buffer at the current location using the built-in
variables gl_FBColor, gl_FBDepth, gl_FBStencil, and gl_FBDatan. Using these facilities,
applications can implement custom algorithms for blending, stencil testing, and the like. However,
these frame buffer read operations may result in a significant reduction in performance, so
applications are strongly encouraged to use the fixed functionality of OpenGL for these operations if
at all possible. The hardware to implement fragment shaders (and vertex shaders) is made a lot
simpler and faster if each fragment can be processed independently both in space and in time. By
allowing read-modify-write operations such as is needed with alpha blending to be done as part of the
fragment processing we have introduced both spatial and temporal relationships. These complicate
the design because of the extremely deep pipelining, caching and memory arbitration necessary for
performance. Methods such as render to texture, copy frame buffer to texture, aux data buffers and
accumulation buffers can do most, if not all, what programmable alpha blending can do. Also the
need for multiple passes has been reduced (or at least abstracted) by the high-level shading language
and the automatic resource management.

RESOLVED on October 12, 2001: Yes, applications can do alpha blending, albeit with possible
performance penalties over using the fixed functionality blending operations.

REOPENED on July 9, 2002: This issue is related to Issue (23) which remains open, so this issue
should also remain open.

Another possibility would be to create an extension that allows more flexibility than the current alpha
blending allows, but would still be considered fixed functionality.

RESOLUTION: Issue 23) is resolved as allowing frame buffer reads, so this is once again resolved
allowing alpha blending, with the caveats listed above.

REOPENED on December 10, 2002. Issue 23 is re-resolved to disallow frame buffer reads.

RESOLUTION: No, applications cannot do alpha blending, because they cannot read alpha.

CLOSED on December 10, 2002.

8) Should the language be defined in such a way that it can be implemented on existing hardware?

DISCUSSION: Today’s generation of hardware does have some programmability. It seems desirable
to define a language that would work on today’s hardware as well as tomorrow’s.

RESOLVED on October 12, 2001: We have tried to make the shading language forward looking and
pitched at a level we believe hardware can attain within a generation or two. We have avoided adding
features (such as small fixed point data types or implicit clamping) or dumbing down (removal of
loops and functions) the language to better support existing hardware as this is a retrograde step. It
would be possible to run a limited subset of shaders on existing hardware but it is not going to be easy
for an application to determine in a portable way if the shader will run or if it will produce acceptable
results. Overall, the decision here is to set a goal for hardware to strive towards for the next few years.
75 TheOpenGLShadingLanguage

I S S U E S
CLOSED on September 20, 2002.

9) Should the concept of the preprocessor for the language be dropped?

DISCUSSION: We could do without the #ifdef by using if (false) and we rely on compiler stripping
out code which cannot be reached. The C++ spec seems to be deemphasizing the use of #ifdef but we
are still retaining it because it is a common idiom, it is easier to see in the code and it can be used in
places where the grammar doesn't allow if (false).

Do we want a vendor specific predefined #define to allow compiler problems to be worked around?
From an idealistic view point no as it provides a back door for extensions, but pragmatically
differences will occur. We have already seen instances of shader writers using #define to make
shaders more readable (e.g., #define MVP gl_ModelViewProjectionMatrix).

RESOLVED on October 12, 2001: No, the preprocessor should be retained. The preprocessor
directives that are supported are #ifdef, #ifndef, #undef, #else, #endif, #pragma, #define token
(without arguments), and #error.

Issue (55) is added to address additional preprocessor directives.

CLOSED on September 10, 2002.

10) Should the fields representing texture components be named s, t, p, and q?

DISCUSSION: Other alternatives to renaming texture r were considered but rejected because they
seemed to be more confusing or error prone. A) Use red, green, blue, alpha instead for color
component selection. This makes the component group mechanism described later too cumbersome.
B) Capitalize either the color or texture component names. C) Drop the names for color or texture.
We didn't want to abandon some notational convenience of one of the important usage of vectors. D)
Change the color component order to be bgra so that the two r components now lined up. This color
order is quite alien to OpenGL so this would lead to many confusing situations in how the existing
API values mapped to the values the shader used.

RESOLVED on October 12, 2001: Yes, using s, t, p, and q as the names for fields representing texture
components is the best choice.

CLOSED on September 10, 2002.

11) Should there be two separate active fragment shaders to handle back facing and front facing cases?

DISCUSSION: If the user specifies two fragment shaders, one for front facing fragments and one for
back facing fragments, the appropriate one could be run automatically. This probably gives a faster
shading rate but it forces the user to maintain two programs (where probably most of the code is
common). This could be done transparently by the compiler if an implementation wishes to optimize
for this case.

RESOLVED on October 12, 2001: No, a single shader should be used to handle both back facing and
front facing geometry.

CLOSED on September 10, 2002.

12) Should built-in functions be required to differ by more than just return type?

DISCUSSION: Overloading functions that differed in return type only was considered. However,
initial work on the compiler has shown that this facility seriously complicates the semantic analysis
of an expression to deduce the return type when it is unambiguous, but buried within an expression.
This may be more complicated than it is worth (and may be the reason why C++ doesn't allow this).
The OpenGL Shading Language 76

I S S U E S
Add on the need for a new syntax for the programmer to use to disambiguate ambiguous cases, and
it's simply easier to give functions different names for different return types.

RESOLVED on February 25, 2002: Yes, built-in functions must differ by more than just return type.

CLOSED on September 10, 2002.

13) How is the noise function defined to allow consistent behavior from one implementation to the next?

DISCUSSION: The noise function is very useful and plays a role in many shading techniques in
RenderMan. It poses a problem in specification (and conformance testing) in that perfectly valid
noise functions will give very different results. OpenGL has avoided specifying operations so tightly
that different implementation will give pixel exact results — this allows an implementation some
latitude in accuracy/performance/cost trade-offs. It also avoids having to specify everything down to
minute detail. Perlin (the originator of the noise function) has recognized the desirability of a
standard noise function (much like everyone expects the sin function to behave in the same way) and
has documented his ideas. Maybe this should be a strongly recommended implementation.

This issue is nearly the same as Issue (36).

RESOLVED on September 19, 2002: No specific implementation of noise is required, but the
specification will attempt to define the noise function in such a way that similar results can be
achieved from one implementation to the next.

CLOSED on September 19, 2002:

14) Should fields be allowed to have numeric selectors (e.g. foo.2)?

DISCUSSION: This breaks the usual convention of identifiers starting with a letter. It makes the
language less pure, makes lexical analysis more difficult, and adds constraints on how numbers are
expressed.

RESOLVED on September 10, 2002: No, the language should be changed so there are no numeric
selectors as suggested in Issue (16).

CLOSED on September 10, 2002.

15) Should we allow fields that swizzle the components of a vector?

DISCUSSION: This seems like an overly complicated part of the language, with no additional
functionality that couldn't be easily expressed with other parts of the language. On the other hand, the
swizzling is exposed in lower level assembly languages. On the third hand, perhaps this is just a
“feature” of hardware that shouldn’t/doesn’t need to be exposed in a high level language. On the
fourth hand, some useful examples of swizzling have been demonstrated, and it isn’t very hard to
support in the compiler.

RESOLVED on September 10, 2002: Swizzling of components is deemed to be a useful language
feature that will be retained.

CLOSED on September 10, 2002.

16) Should there be a way to indirectly reference into a vector or matrix?

DISCUSSION: Issue (14) and this one could be simultaneously fixed by adding [] as a numeric way
of indexing into a vector. Then, one would say foo[2], never foo.2, solving Issue (14), and foo[x] as
an indirect reference. Numbers could then be expressed as in C.
77 TheOpenGLShadingLanguage

I S S U E S
RESOLVED on September 10, 2002: Yes, indirect references into vectors and matrices should be
allowed in the manner suggested in the discussion above.

CLOSED on September 10, 2002.

17) Should gl_Position and other currently "write-only" variables be readable?

DISCUSSION: This is simply a compiler feature, with no implication to hardware support. It's
often cumbersome to write code without this feature. The compiler can use temporaries to store
intermediate values if necessary. This will make programs a little bit cleaner as well.

On the other hand, the api model of read-only inputs and write-only outputs is probably cleaner for
the shader writer.

RESOLVED on September 19, 2002. Yes, “write-only” variables are allowed to be readable.

CLOSED on September 19, 2002.

18) How should performance/space/precision hints be provided?

DISCUSSION: One basically agreed on so far is for varying: "varying" means perspective correct,
while "fast varying" means take a short cut if it saves time. Perhaps we can define a #pragma for this.
Perhaps this could also be applied in other areas.

RESOLUTION: Performance/space/precision hints and types will not be provided as a standard part
of the language, but reserved words for doing so will be.

CLOSED: November 26, 2002.

19) Should the built-in function “lookup” be added?

DISCUSSION: Textures can be used as look-up tables, not just textures. The main difference is that
look-up tables would have a type associated with the return.

RESOLUTION: Yes, the lookup functions should be added as built-in functions so that shader can
express the type of the returned value. Functions like i8texture3 will be added to mean three 8bit ints
are being looked up. This will still be called a texture, as it is expected to share texture resources. A
generic table lookup that is separate from texture resources is deferred until version 1.1.

CLOSED October 22, 2002.

NOTE: These were later removed as part of fitting this language on OpenGL 1.4, as that does not
support textures these functions would operate on.

20) Should ints greater than 16 bits be added?

DISCUSSION: The shading language is designed in a way that it does not overburden the hardware
designer by requiring a lot of unnecessary and redundant features. Integers are useful and may be
more efficient for use as loop counters and array indices. 16-bit integers were added to the language
as a concession to efficiency for these cases. The mantissa of a floating point value can be used to do
integer operations, therefore hardware designers are not required to have a full integer math unit in
addition to the floating point math unit. If this were to end up being the key factor in deciding this
issue, integers could be defined to be 23 bits in size (at least for operations within the processor),
since this is the size of the mantissa of an IEEE FP32 value. As another data point, Renderman does
not support integers at all.

RESOLUTION: There are hardware reasons today to limit ints to 16 bits, so they will be.

CLOSED: November 19, 2002.
The OpenGL Shading Language 78

I S S U E S
21) Should vectors or (local variable) arrays of ints be added?

DISCUSSION: The lookup function proposed in Issue (19) could return 3 integer values, for
example. Shaders are not just floating point algorithms, but also do things like table lookups,
indirection, and other generic algorithmic computation. The language does not have to map directly
to hardware. On the other hand, to support this we would have to add ivec2, ivec3, and ivec4, or
allow local variable arrays of ints.

RESOLUTION: Yes. Vectors of ints will be added.

CLOSED: November 5, 2002.

22) Should recursion be supported?

DISCUSSION: Probably not necessary, but another example of limiting the language based on how it
would directly map to hardware. One thought is that recursion would benefit ray tracing shaders. On
the other hand, many recursion operations can also be implemented with the user managing the
recursion through arrays. RenderMan doesn't support recursion. This could be added at a later date, if
it proved to be necessary.

RESOLVED on September 10, 2002: Implementations are not required to support recursion.

CLOSED on September 10, 2002.

23) Should the fragment shader be allowed to read the current location in the frame buffer?

DISCUSSION: It may be difficult to specify this properly while taking into account multisampling. It
also may be quite difficult for hardware implementors to implement this capability, at least with
reasonable performance. But this was one of the top two requested items after the original release of
the shading language white paper. ISVs continue to tell us that they need this capability, and that it
must be high performance.

RESOLUTION: Yes. This is allowed, with strong cautions as to performance impacts.

REOPENED on December 10, 2002. There is too much concern about impact to performance and
impracticallity of implementation.

CLOSED on December 10, 2002.

24) Does anything need to be added to the language to allow programs can be compiled at compile time,
and not need to have multiple compiled versions saved for OpenGL state changes?

DISCUSSION: It is strongly desired that implementations can generate proper code at compile time,
and not have to have multiple compiled versions or later recompilation in case OpenGL state changes
at a later time (e.g., not knowing the attributes of a texture map until execution time). Maybe another
area where more hints are needed in the language, or maybe hardware evolution can take care of the
issues.

RESOLUTION: This is resolved to be a general design goal of the OpenGL shading language... that
other issues be resolved with the intent that the object code generated from a shader be independent
of other OpenGL state.

CLOSED: November 5, 2002.

25) Should we add min and max that take gen-type and a scalar, to match clamp semantics?

RESOLUTION: Yes, these should be added.

CLOSED: September 22, 2002.
79 TheOpenGLShadingLanguage

I S S U E S
26) Should the programmability be broken out by function (e.g., light shaders, surface shaders, transform
shaders, texgen shaders, etc.) rather than the hardware-centric method (vertex and fragment
shaders) in the current proposal?

RESOLVED on December 7, 2001: No, the notion of vertex and fragment shaders fits in much better
with OpenGL as a hardware-centric API and has received positive feedback during review.

CLOSED on September 10, 2002.

27) Should texture units be specified as a keyword or a number?

DISCUSSION: For the built-in texture access functions, the texture unit is specified as a number.
Should it be defined as a keyword instead? The current feeling is that in certain cases it is more
convenient to specify the texture as a programmatic value rather than a keyword.

This issue is actually part of Issue (51).

RESOLVED on December 7, 2001: The texture unit is specified as a number. In certain cases it is
more convenient to specify the texture as a programmatic value rather than a keyword.

REOPENED on July 12, 2002: Need further discussion of the real convenience provided.

RESOLUTION: Resolved as issue 51.

CLOSED October 22, 2002.

28) Are global values auto-initialized?

RESOLVED on December 7, 2001: No, global values are not auto-initialized. It may be useful for an
implementation to support auto-initialization as a debug mode option, however.

CLOSED on September 10, 2002.

29) Should the language support bit-wise operations?

RESOLVED on December 7, 2001: The language itself has support for bit-wise operations. In certain
programmable units (pack and unpack processor) these are vital. However, there is a desire to cap the
complexity of each programmable unit. For the vertex and fragment processors, Boolean operations
are supported but general bit-wise operations are not. This is to avoid requiring full functionality
integer processing on top of the already-required floating point capabilities of these processors.

REOPENED on July 12, 2002: Certain bit operations are very useful and cannot be easily emulated
with floating point operations. For instance, applications could multiple fields of data into texture
components and use the bit-wise operators to extract those values (for instance, using 12-bits of a 16-
bit luminance texture to store intensity, and the remaining four bits to store opacity). Giving shaders
the abillity to do this type of extraction would be preferable to defining new texture formats.

Another way of handling this functionality is with a built-in function to extract a bitfield out of an
integer, as this is one expected use of bit-wise operators.

This interacts with issue 90. Without integer textures, there is less need to solve this issue.

RESOLUTION: Bit-wise support is deferred to a future release.

CLOSED: December 10, 2002.

30) Should internal computations be required to be carried out with 32-bit floating point precision? Or
should implementations be allowed to carry out computations with higher or lower precision if they
so desire?
The OpenGL Shading Language 80

I S S U E S
DISCUSSION: This issue is related to Issue (33) and Issue (68).

RESOLUTION: It is already implicit that floating point requirements must adhere to section 2.1.1 of
version 1.4 of the OpenGL Specification. This is sufficient.

CLOSED: November 26, 2002.

31) Can you override the computed LOD or bias within a fragment shader?

RESOLVED on October 12, 2001: The computed LOD may be biased by a value provided by a
fragment shader. Built-in texture access functions with an LOD argument are provided for this
purpose.

CLOSED on September 19, 2002.

32) Are interpolated values perspective correct?

RESOLVED on June 3, 2002: Yes, variables defined as varying are perspective correct.

CLOSED on September 10, 2002.

33) Should precision hints be supported (e.g., using 16-bit floats or 32-bit floats)?

DISCUSSION: Standardizing on a single data type for computations greatly simplifies the
specification of the language. Even if an implementation is allowed to silently promote a reduced
precision value, a shader may exhibit different behavior if the writer had inadvertently relied on the
clamping or wrapping semantics of the reduced operator. By defining a set of reduced precision
types all we would end up doing is forcing the hardware to implement them to stay compatible.
When writing general programs, programmers have long given up worrying if it is more efficient to
do a calculation in bytes, shorts or longs and we do not want shader writers to believe they have to
concern themselves similarly. The only short term benefit of supporting reduced precision data types
is that it may allow existing hardware to run a subset of shaders more effectively.

This issue is related to Issue (30) and Issue (68).

RESOLUTION: Performance/space/precision hints and types will not be provided as a standard part
of the language, but reserved words for doing so will be.

CLOSED: November 26, 2002.

34) Should the design of the OpenGL Shading Language include support for shaders that are not real-
time in nature?

RESOLVED on September 19, 2002: Yes, the design of the language should take into account
applications that are not real-time in nature.

CLOSED on September 19, 2002.

35) Should additional types such as point, normal, color, etc. be added to the shading language?

RESOLVED on October 12, 2001: No, these type should not be added. The existing generic vector
types can support them all without the need for adding additional types to the language.

CLOSED on September 10, 2002.

36) Will everyone have different implementations for smoothstep and noise, or should we try to specify
and enforce a common implementation of these?
81 TheOpenGLShadingLanguage

I S S U E S
DISCUSSION: This issue is nearly the same as Issue (13). The definition of smoothstep should be
sufficient. OpenGL is not pixel-exact, and the definition of smoothstep is as accurate as it needs to be
for the specification.

RESOLVED on September 19, 2002: There is a lot of room for a variety of implementations of the
OpenGL Shading language. Even with OpenGL today, it is not expected that pictures produced on
two different pieces of hardware will produce identical results. The specification should be written in
such a way that implementations will produce very similar (though not identical) results.
Conformance testing for the OpenGL Shading Language is an issue for the OpenGL ARB to wrestle
with in the future.

It has further been decided to add a source specification of noise() to the spec. But, this is not done.

CLOSED on September 19, 2002.

37) Should the fragment shader functionality to “kill” a fragment be a keyword or a built-in function?

DISCUSSION: Kill feels like a flow control directive similar to break and continue. It's not a
function which should be overridden by a user function. The Boolean expression can be evaluated in
an if statement that precedes the keyword kill. There's no reason to continue processing once kill is
executed, so no reason to disguise it as a function call. kill(boolExpr); as a shortcut for if (boolExpr)
kill; is not much savings.

RESOLVED on April 15, 2002: The fragment shader functionality to “kill” a fragment should be a
keyword.

CLOSED on September 19, 2002:

38) Should the built-in texture and noise functions be available from within the vertex shader?

DISCUSSION: There have been numerous requests to support displacement mapping. This request
could be satisfied by allowing the built-in noise and texture functions to be available to vertex
shaders as well as fragment shaders. This could be implemented in hardware by having the compiler
split the vertex shader into a prolog, a texture/noise access, and an epilog. The prolog would be
executed by the vertex processing hardware, and the texture/noise access would be done by the
fragment processing hardware. The intermediate results would be fed back through the vertex
processing hardware to execute the epilog, and then passed on to the fragment shader for fragment
processing. On the other hand, it is possible for applications to do this all on the host CPU.

RESOLUTION: Yes, the texture and noise functions should be made available from within the vertex
shader as well.

CLOSED October 22, 2002.

39) Should it be defined that interpolated values for varying variables are determined by sampling at the
fragment center?

DISCUSSION: This interacts with multisampling and requires further investigation.

RESOLUTION: This is to follow the same rules as outlined in section 3.2.1 of version 1.4 of the gl
specification.

CLOSED: November 26, 2002.

40) Should unsigned ints be supported in the language for vertex and fragment processing?
The OpenGL Shading Language 82

I S S U E S
DISCUSSION: This issue is related to Issue (29). If we allow bit-wise operators, there probably
needs to be a way to specify either signed or unsigned integers. Currently unsigned ints are defined
only for the pack and unpack shader languages, not for the vertex and fragment languages.

RESOLUTION: Because it has been resolved that integers carry 16 bits of precision, in addition to a
sign bit, it is not necessary to introduce an unsigned integer type.

CLOSED: November 26, 2002.

41) Are gl_FrontMaterial and gl_BackMaterial attributes or uniforms?

DISCUSSION: The spec currently defines these as attribute arrays, but the spec also says that arrays
are not allowed for attributes. If we want to treat them as uniforms, they can remain as arrays.
Otherwise, we should change the names and definitions so as to not use arrays (i.e., give each
attribute a unique name).

RESOLVED on September 19, 2002: These will be treated as uniforms. Moving forward, we would
rather encourage applications to use user-defined attributes if these need to be changed at every
vertex.

CLOSED on September 19, 2002.

42) Should there be a way to specify that the transformed position generated by a vertex shader should be
invariant with respect to the fixed functionality pipeline?

DISCUSSION: This feature was requested by an ISV. Without it, on many graphics architectures, it
may be impossible to precisely match geometry rendered using a vertex shader with geometry
rendered using the fixed functionality path.

One possible solution is to change the spec where it says that the built-in variable gl_Position must be
written by all vertex shaders. Instead, if the variable gl_Position is not written by the vertex shader,
the vertex position will be transformed in a manner that is invariant with respect to the fixed
functionality pipeline. If gl_Position is written by the vertex shader, the resulting position may or
may not be invariant with respect to the fixed functionality pipeline.

But this solution increases the risk that a shader writer might inadvertently fail to write gl_Position,
which will now not generate an error but rather invariant transform gl_Vertex. So here is a possible
set of alternative resolutions. Since we have built-in functions, a built-in function might be a clean
solution to the request for an invariant transformation. All three built-in functions below could
provide for invariant transform of gl_Vertex. Alternative (A) will be most familiar to RenderMan
shader writers (minus the named spaces). Alternatives (B) and (C) only provide for invariant
transform, with (B) allowing the input to be specified while (C) implicitly inputs gl_Vertex.

The original suggested resolution, and these alternative resolutions, solve the ISV request, but in
different manners.

(A) Built-in function:

genType transform([mat xform,] genType coord) If matrix is specified, return xform*coord. Else,
transform coord invariant to fixed function method.

Examples:

// transform by MVP, not necessarily invariant with fixed function.
gl_Position = transform(gl_ModelViewProjectionMatrix, gl_Vertex);

// transform invariant with fixed function.
83 TheOpenGLShadingLanguage

I S S U E S
gl_Position = transform(gl_Vertex);

(B) Related to (A), but no optional matrix:

genType transform(genType coord) Transform coord invariant to fixed function method

Example:

// transform invariant with fixed function.
gl_Position = transform(gl_Vertex);

(C) Related to (B), but no arguments, rename function:

vec4 fixedtransform() Output invariant with fixed function method, implicit input is gl_Vertex.

Example:

gl_Position = fixedTransform();

RESOLUTION: Use option C from above.

CLOSED October 22, 2002.

43) What is definition of built-in derivative functions of gl_FB*?

DISCUSSION: An short example fragment shader demonstrates the question best.

void main(void)
{

gl_FragColor = dFdy(abs(gl_FBColor));
}

Earlier whitepapers allowed general framebuffer read within the fragment processor. OpenGL
generally only specifies the fragments to be generated by rasterization, not the order the fragments
are generated by rasterization. So general framebuffer reads within the fragment processor could
lead to undefined behavior.

Later whitepapers permit only restricted framebuffer reads within the fragment processor. (The pixel
at the xw, yw window coordinates of the fragment.). So the question becomes, do the built-in
derivative functions conceptually require an implicit general frambuffer read (at least in the
immediate neighborhood of the pixel at the xw, yw window coordinates of the fragment)? What does
"at any given point in time" mean in this context?

Possible resolutions:

a) Don't allow gl_FB* read operations in the fragment processor. (This interacts with Issue (23).)

b) The built-in derivative functions are undefined if a gl_FB* is a parent of an expression. (The built-
in derivative functions are in some cases undefined within the body of a conditional or loop.)

Rejected resolutions:

c) Explicitly define the order which fragments are rasterized by OpenGL.

RESOLUTION: gl_FB* have been removed. Issue 23 has been reopened and closed as disallowing
frame buffer reads.

CLOSED on December 11, 2002.
The OpenGL Shading Language 84

I S S U E S
44) Should the uniform variables that represent current OpenGL state be available only to specific
processors or available to any processor?

DISCUSSION: The current specification is biased toward vertex lighting and fragment shading.
Currently, OpenGL state represented as built-in uniform variables is available only to a specific
processor (e.g., lighting state is available only to the vertex processor). This makes it unnecessarily
difficult for the fragment shader to do lighting calculations with the OpenGL state. The specification
should be agnostic about which shaders will need access to what built-in uniform OpenGL state.

RESOLUTION: OpenGL state that is encapsulated as a uniform variable should be accessible to any
processor.

CLOSED October 22, 2002.

45) Should naming conventions for OpenGL state be the same as those adopted for the
ARB_vertex_program extension?

DISCUSSION: Where the OpenGL Shading Language defines gl_ModelViewMatrix to refer to a
specific piece of OpenGL state, the ARB_vertex_program extension uses state.matrix.modelview.
Should the conventions be the same for consistency?

The OpenGL Shading Language conventions for referring to GL state were developed before it was
clear that an ARB vertex program extension would even be possible due to IP issues and lack of
consensus. ARB_vertex_program (and ARB_fragment_program) state binding might confuse some
to think of the syntax as a structure in a C-like language. (Less risk of this confusion in an assembly-
ish language.) And ARB_vertex_program and ARB_fragment_program packs state into vec4s.
There is less of a need for such packing in a C-like language.

RESOLVED on August 13, 2002: No, the conventions need not be the same. There isn’t enough
interest in making this name change at this point.

CLOSED on September 10, 2002.

46) What is the expected behavior for general derivatives at object silhouettes?

DISCUSSION: It would have to be the local instantaneous derivative if it's to be used for filter width
or lod computation. That pretty much dictates that no implementation can look to neighboring
fragments to compute derivatives, since it is always possible to construct an object that hits only one
fragment (and so has no valid neighbors).

RESOLUTION: See derivative section of paper.

CLOSED on December 4, 2002.

47) Should the derivative functions have names that are more similar to those used in Renderman?

DISCUSSION: The naming of the derivative functions is somewhat at odds with the precedent
established by RenderMan, where Du(f) and Dv(f) compute df/du and df/dv respectively. dPdu and
dPdv are potentially more accurate, but functionally equivalent to Du(P) and Dv(p), where P is the
built-in variable for 3D location of the sample. We should at least consider Dx() and Dy() for the
names of the OGL2 derivative functions.

RESOLUTION: Names are changed to dFdx, dFdy.

CLOSED on December 4, 2002.

48) Should a dPdz (or Dz) function be added?
85 TheOpenGLShadingLanguage

I S S U E S
DISCUSSION: If someone wanted to derive df/du and df/dv We'd also need dPdz() or Dz() to avoid
a singularity at object silhouettes

RESOLUTION: This is not added.

CLOSED on December 4, 2002.

49) Should the shading language include structs?

DISCUSSION: The shading language should support structs. Structs provide a clean way of grouping
data to create abstract data types. They are convenient for developers and are supported in C and
other generic programming languages.

On the other hand, no compelling case for adding structs to the language has been made. It could help
us get the language finalized sooner if we left this till a later rev of the language specification. But, if
structures were added, it would be nice to define the lighting state in terms of structs. Vital Images
(ISV) indicates they would like to have structs in the language.

RESOLVED on September 19, 2002: The shading language will include structs.

CLOSED on September 19, 2002.

50) Should the vertex processor be defined in a way that allows it to perform tessellation of curved
surfaces?

DISCUSSION: The issue of geometric LOD and curved suffices is so complex and is so continuously
developed that no piece of hardware simpler then a general purpose programmable CPU is up for the
job. Any choice of primitive, will be heavily disputed. And most of the popular curved surface
primitives like creased subdivision surfaces or trimmed NURBS are not easily implemented in
hardware.

If we look at the problem form a performance view, the generation of LODs are generally not the
problem since new LODs don't need to be generated to often, only when the geometry in a significant
way has moved closer or further away from the camera. The problem comes in when we have
animation of interactive manipulation of the surface. In these cases the topology doesn't change so
this can be solved on a very efficient way. We simply store a list of references to CVs and weighting
factors for each vertex in the LOD.

This simple code can accommodate all types of curved surface:

for(i = 0; i <vertex_count; i++)
{

x = 0;
y = 0;
z = 0;
for(j = 0; j < *influence_list_length; j++)
{

index = *index_array++;
value = *value_array++;
x += value * control_vertex_array[index].x;
y += value * control_vertex_array[index].y;
z += value * control_vertex_array[index].z;

}
surface_vertex_array[i].x = x;
surface_vertex_array[i].y = y;
surface_vertex_array[i].z = z;
The OpenGL Shading Language 86

I S S U E S
influence_list_length++;
}

This could be integrated in the vertex shader to allow for maximal flexibility, but this means that
vertex shaders must have the ability to do random access arrays of data.

RESOLUTION: Postponed to a future version of this specification.

CLOSED: October 22, 2002.

51) Should the language provide some mechanism to distinguish variables that are position independent
from those that aren’t?

DISCUSSION: Comments have been made along the lines of "should we really expose SIMD
semantics in the language?" Response:

• What's really being introduced is position independence.
• The existing 'uniform' and 'varying' already introduce this concept, this proposal just

completes it.
• Most hardware will benefit from it.

Feasibility: It's possible for a compiler to do sufficient data-flow and control-flow analysis to find all
paths that could lead to the assignment of a position independent variable. It may find extra paths,
but is not allowed to miss any actual paths. From this, a compiler can prove if a position independent
variable only takes on values that are position independent. It may, on rare occasion say a position
independent variable is not so, and be wrong, but these will typically occur in degenerate code.

Global Uniforms. It's asking too much of a compiler to do cross-function data-flow analysis,
especially across different compilation units. So, the idea of global read/write position independent
variables is not supportable and not proposed. Hence, there is no conflict between these uses of
'uniform'.

Output Uniform Parameters. Same problem as uniform globals. Uniform globals and parameters
must be read only.

A past alternative was to use the 'int' type as a hint to the compiler that a value was position
independent, like for loop indexes, texture ids, array subscripts, etc. This was troublesome, because
floating point based control flow could make the hint invalid, leaving the compiler as burdened as it
would be without the hint. And/or it made the 'int' type less useful, forcing it to adhere to the
proposed 'uniform' semantics. This was too much tying together of otherwise independent ideas.

This issue is related to Issue (27).

RESOLUTION: Use the 'uniform' qualifier to identify locally scoped variables, function return
values, and function parameters as being position independent. Local 'uniform' variables cannot be
written to with values that were derived from position. Functions declared to return a 'uniform' can
only return values not derived from position.

The compiler may return a warning if there is a statically identifiable path through the code that
leaves a position dependent derived value in a position independent variable. That is, if a variable is
declared uniform or passed to a uniform parameter, the compiler will issue an error if it can't prove
the variable is always position independent.

CLOSED October 22, 2002.

52) How should resource limits for the shading language be defined?
87 TheOpenGLShadingLanguage

I S S U E S
DISCUSSION: Various proposals have been discussed. One very important consideration is to end
up with a specification that provides application portability (e.g., ISVs do not need to support
multiple rendering back ends in order to run on all the different flavors of hardware). ISVs definitely
would prefer the specification to say that the shading language implementation is responsible for
ensuring that all valid shaders must run.

RESOLUTION: Resources that are easy to count (number of vertex processor uniforms, number of
fragment processor uniforms, number of attributes, number of varying, number of texture units) will
have queriable limits. The application is responsible for working within these externally visible
limits.The shading language implementation is responsible for virtualizing resources that are not easy
to count (number of machine instructions in the final executable, number of temporary registers used
in the final executable, etc.).

CLOSED on October 29, 2002, as being part of the API issues list.

53) How are user clip planes handled if the coordinate spaces are separated by a transform that is non-
linear?

DISCUSSION: The shading language specification relies on the standard definition of GL clipping.
This works as long as the coordinate spaces are only separated by a linear transformation, however
the shading language also lifts these restrictions.

SUGGESTED RESOLUTION: Adopt the "clip coordinate output" approach found in certain
NVIDIA proposals for ARB_vertex_program (removed long before the spec was final). This
approach provides fully programmable user clipping, not dependent on any semantics of the program
or any analysis thereof; and it does not leave most cases undefined.

RESOLUTION: Specify that user clip planes work only under linear transform. It is currently
undefined what happens under non-linear transform.

CLOSED October 22, 2002.

54) How are global pixel operations (e.g., histogram, min/max) supported?

ADDED on September 10, 2002.

DISCUSSION: The current specification allows access only to the fragment at the current location
(though this is open for discussion as per Issue (23)). Operations that require access to other fragment
locations in the frame buffer or on the incoming data stream are expressly prohibited. How will the
shading language provide functionality that supports global pixel operations such as histogram and
min/max?

The desire is to run a program that operates on multiple fragments (similar in spirit to how to run a
vertex program that generates new geometry, Issue (50)).

RESOLUTION: Postponed to a future version of this specification.

CLOSED: October 22, 2002.

55) Should the preprocessor have any directive in addition to those already defined?

ADDED on September 10, 2002.

DISCUSSION: A number of preprocessor directives could be added to the language specification, for
instance, #if, #elif, #include, #define token(...) (with arguments), ## (token pasting), #line, #error, #
(by itself), # (to make a token into a string), defined(token) (and all the other operators, &&, |, +,
etc.), and predefined macros, like __DATE__, __FILE__.
The OpenGL Shading Language 88

I S S U E S
In particular, #if would be a useful addition to support processing of versions, dates, and the like. But
this necessitates bringing in the ||, &&, >, <, ! operators.

RESOLVED on September 24, 2002: The shading language preprocessor will essentially have all the
capability of the C preprocessor except that the #include directive is not supported and string-based
directives are also not included.

CLOSED on September 24, 2002.

56) Is it an error for an implementation to support recursion if the specification says recursion is not
supported?

ADDED on September 10, 2002.

DISCUSSION: This issues is related to Issue (22). If we say that recursion (or some other piece of
functionality) is not supported, is it an error for an implementation to support it? Perhaps the
specification should remain silent on these kind of things so that they could be gracefully added later
as an extension or as part of the standard.

RESOLUTION: Languages, in general, have programs that are not well-formed in ways a compiler
cannot detect. Portability is only ensured for well-formed programs. Detecting recursion is an
example of this. The language will say a well-formed program may not recurse, but compilers are
not forced to detect that recursion may happen.

CLOSED: November 29, 2002.

57) Should there be a standard way for applications to invoke debug mode?

ADDED on September 10, 2002.

SUBSUMED by Issue (67).

CLOSED on September 24, 2002.

58) Should the language include a list of reserved words?

ADDED on September 10, 2002.

DISCUSSION: Currently the specification does not contain a list of reserved words. Without such a
list, valid shaders might become invalid when we make additions to the language in the future.

SUGGESTED RESOLUTION: Yes, the language should include a list of reserved words, including
the following: struct, union, enum, typedef, template, goto, switch, default, inline, noinline, long,
short, double, sizeof, volatile, public, static, namespace, using, asm, cast, half, fixed, and all tokens
that contain two consecutive underscores.

RESOLVED on September 24, 2002: Yes, the shading language should include a list of reserved
words.

CLOSED on September 24, 2002.

59) How should function parameters be passed?

ADDED on September 10, 2002.

DISCUSSION: Today the specification says that function parameters are call by reference, no
aliasing is allowed and output is used for output parameters. This has some non-obvious problems:
(A) Uniforms and other globals cannot be passed in as parameters, as that would create an alias. (B)
Varyings and other write-only variables are very tricky to pass by reference, as there is nothing that
89 TheOpenGLShadingLanguage

I S S U E S
says a parameter is write-only. (C) If a shader writes into a “pass by reference” parameter, it should
either update the caller's argument, or the shader should generate an error because it was not an
output parameter. However, expected usage seems to be that it's all right to write to a non-output, the
effect is just local.

The specification could be changed to say that function parameters are call by value-return, which
means the following: (A) A parameter with no qualifier means the parameter is copied in from the
caller at call time. (B) The qualifer output (or out) means the parameter will be copied back to the
caller at return time, but not copied in at call time. (C) The qualifier input output (or inout) means the
parameter is both copied in and copied back.

These semantics solve all the parameter-related aliasing problems. The compiler doesn’t have to
check for aliasing, it can compile as if there is no aliasing, and it's well-defined to the shader writer
what happens if they pass parameters in a way that looks like aliasing. These semantics also allow for
write-only variables to be passed to a function. Finally, this solution allows writing to a non-output
parameter, while making it clear it's only a local copy that gets modified.

RESOLVED on September 24, 2002: Change the spec to say that function parameters are call by
value-return as defined above.

CLOSED on September 24, 2002.

60) How should the built-in names for lighting state be defined?

ADDED on September 11, 2002.

DISCUSSION: The current names for lighting state (gl_Light0..n[8] and the associated predefined
array index values) make it awkward to write a loop to process lights. This issue is related to Issue
(49).

RESOLVED on September 24, 2002: Structs should be added to the shading language, and the
lighting state should be redefined as an array of light structs.

CLOSED on September 24, 2002.

61) Should user-defined functions be allowed to redefine built-in functions?

ADDED on September 13, 2002.

DISCUSSION: It’s not clear that there is anything to be gained by allowing this. If users
inadvertently use the same name as a built-in, they will get unexpected behavior or a drop in
performance or both.

RESOLUTION: Yes. This is normal behavior for a language and a library.

CLOSED on September 10th, 2002.

62) Should the language include texture gen coefficients for eye/object plane?

ADDED on September 13, 2002.

DISCUSSION: Issue raised by Kent Lin of Intel.

RESOLUTION: Yes, this state should be added.

CLOSED October 22, 2002.

63) Should the language include a built-in variable for the projection matrix?

ADDED on September 13, 2002.
The OpenGL Shading Language 90

I S S U E S
DISCUSSION: Built-in variables are already defined for the model-view matrix and the model-
view-projection matrix. Should a built-in variable be added for the projection matrix as well?

RESOLUTION: Yes, this state should be added.

CLOSED October 22, 2002.

64) Should built-in variable names be added for the state introduced in OpenGL 1.4?

ADDED on September 13, 2002.

DISCUSSION: The specification is currently written against OpenGL 1.3, therefore it does not
contain the point parameter states and fog coordinate state. Should these be added?

RESOLVED on September 24, 2002: Yes, we should add built-in variable names for the state
introduced in OpenGL 1.4.

CLOSED on September 24, 2002.

65) Should mat * mat perform a matrix multiply or a component-by-component multiply?

ADDED on September 16, 2002.

DISCUSSION: Currently the specification states that the “*” operator will cause a component-by-
component multiplication if two matrices are specified. The multiply operator (*) does the expected
linear algebra operations for scalar * scalar, scalar * vector, and matrix * vector but not for matrix *
matrix where it is component-wise instead, which is a comparitively rare operation. This was done
for consistency with other operators that behave component-wise. (E.g., we probably do not want
matrix / matrix to be real matrix division instead of component-wise. Should matrix * matrix be
changed to indicate a matrix multiplication operation?

RESOLUTION: The specification should be modified to indicate that the “*” operator will cause a
matrix multiply if the two operands are matrices.

CLOSED October 22, 2002.

66) What should the specification say about the length of time a shader is allowed to run?

ADDED on September 16, 2002.

DISCUSSION: Earlier versions of the white paper talked about a watchdog timer. Is such a thing
necessary as part of the language specification?

RESOLUTION: The language specification should not say anything about the length of time a shader
is allowed to run. Timeouts, interactivity, and detecting malicious shaders are implementation and/or
operating environment details.It probably should be somewhere in the GL2 extension specification(s)
that an executing shader is terminated if the application that caused execution of that shader is
terminated.

CLOSED October 22, 2002.

67) Should there be a standardized way to specify debugging and optimization levels?

ADDED on September 16, 2002.

DISCUSSION: Four alternatives are possible. (A) We don't debug, and we always optimize, so there
is no problem. (B) We add debug and optimize parameters to the entry points for compiling and
linking. (C) We use #pragma to specify debug and optimization levels, and outline basic portable
meanings. (D) We say this is entirely platform dependent, and don't specify anything.
91 TheOpenGLShadingLanguage

I S S U E S
(A) seems short-sighted because turning optimization on/off is a technique and work-around for
tracking down some kinds of defects, we will eventually want to debug shaders, and there will be
compile-time vs. run-time trade-offs (e.g. if an application is dynamically generating shaders that
have really short life-times, it may be faster to turn off slower optimizations).

(B) seems a bit awkward as there will be platform dependent aspects to these activities. (D) seems to
be going to far for something that's going to, in principle, exist on all platforms.

RESOLUTION: Use #pragma to specify debug and optimization levels and outline basic portable
meanings.

CLOSED October 22, 2002.

68) Should the language support explicit data types such as 'half’ (16-bit floats) and 'fixed' (fixed
precision clamped data type)?

ADDED on September 17, 2002.

It is common for high level languages to support multiple numeric data types, to allow programmers
to choose the appropriate balance between performance and precision. For example, the C language
supports the float and double data types, as well as a variety of integer data types. This same general
consideration applies for a shading language.

For shading computations, precisions much lower than 32-bit floating point are often adequate. Until
recently, most graphics hardware performed all shading computations in 9 or 10 bit fixed-point
arithmetic. Lower-precision data types can be implemented with higher performance, especially
when the data must travel off chip (e.g. texture data). For this reason, it is desirable to provide access
to data types with precision of less than 32 bits in a hardware shading language.

Issue (33) discusses precision hints. Precision hints are less useful than additional data types,
because precision hints do not allow function overloading by precision. Developers find it very
convenient and useful to be able to have functions with same names and argument lists with different
precision data types.

It is also important to be able to specify data type per variable (as opposed to per-shader), because it
is common for some computations (e.g. texture-coordinate computations) to require higher precision
than others.

On the other hand, there is a desire to ensure that shaders are portable between different
implementations. In order to achieve portability, implementations that don’t have native support for
half will be penalized because they will have to clamp intermediate calculations to the appropriate
precision. If these additional data types are hints that the compiler can choose to do the calculations to
lower precision then this leaves the ISV open to unintended clamping or overflow semantics so
different architectures can give very different results. The hint also implies that there is a well
specified way to convert to between types under the hood so function overload resolution gets more
complicated and additional rules are needed to resolve ambiguities, unless all legal combinations of
functions must be supplied. Specifying all legal combinations requires adding quite a large number
of additional function types (dot product will need {float, half, fixed} * {float, half, fixed} * number
components or 36 versions (vs 4 with only float).

If the additional data types are real types then what can they be applied to? If it is to uniforms and
attributes then the different sizes now reflect in the API, but half and fixed have no native support in
C. If a half is followed by a float does this mean a float has to start on a 16 bit boundary? What about
The OpenGL Shading Language 92

I S S U E S
packing of fixed - the true size is undefined. If half and fixed are just restricted to temporaries then
this makes things easier but now the storage efficiency benefit is lost.

The OpenGL spec currently says “The maximum representable magnitude of a floating-point number
used to represent positional or normal coordinates must be at least 232.” Should we introduce
something that runs counter to this? s10e5 precision is inadequate for texture coordinates even for a
1k by 1k texture. It seems that half-floats open a door for precision issues to propogate throughout a
shader.

RESOLUTION: Performance/space/precision hints and types will not be provided as a standard part
of the language, but reserved words for doing so will be.

CLOSED: November 26, 2002.

69) Should the fragment shader be able to access a varying variable that provides the position?

ADDED on September 17, 2002.

DISCUSSION: Window position can be very useful in certain fragment shaders. For example, it can
be used to implement stipple patterns using fragment shaders.

RESOLUTION: The window position is part of the built-in variable gl_FragCoord that is available
within the fragment processor. The specification should be modified to make it clear that the x and y
values of this variable define the window position of the fragment.

CLOSED October 22, 2002.

70) Should the language support boolean vectors (e.g. bool2, bool3, bool4), and corresponding vector
operators?

ADDED on September 17, 2002.

DISCUSSION: The language supports short float vectors (e.g. vec2, vec3, vec4), so it would be
consistent to support boolean vectors as well. If the language includes support for boolean vectors
and operations, it is simple to express elementwise vector computations. For example, the min and
max vector operations can be elegantly implemented within the language using bool-vector
operations.

When a comparison operator such as '<' is applied to vector operands, the result is a boolean vector
that contains the result of the elementwise comparison. The '?:' construct operates in elementwise
fashion if the first operand is a boolean vector. if, while, and for still require a scalar boolean value

RESOLUTION: Vectors of bool will be added. But C-like short-circuit evaluation of && and || will
be kept. For this release, if and ?: will select based only on scalar bools. Since == and != should also
return a scalar bool (as they do for all types, including struct), they will do so, and not return a vector
of bool when vectors are compared. Hence, <, >, <=, and >= also will not create vector of bool.
They will not legally operate on vectors. Rather, built-in functions will be added for relational
operations on vectors.

CLOSED: November 5, 2002.

71) Should the shading language support compound data structures such as arrays of arrays, structs of
arrays, arrays of structs, etc.?

ADDED on September 17, 2002.

DISCUSSION: The ability to create compound user-defined data structures is a fundamental part of
almost all high-level programming languages. Omitting support for these capabilities would be
93 TheOpenGLShadingLanguage

I S S U E S
inconsistent with the generally forward-looking nature of the OpenGL shading language design
effort.

On the other hand, as with the issue of adding structs (Issue (49)), a case can be made for every
language that it will be useful to someone, somewhere, sometime. Is it worth taking the time and
effort to ensure that this functionality is part of the first version of the specification? Will it cause any
problems to defer it and add it later?

RESOLVED on September 24, 2002: Yes, the shading language should support arrays of arrays,
structs of arrays, arrays of structs, etc.

CLOSED on September 24, 2002.

72) Should the shading language include a switch statement?

ADDED on September 19, 2002.

DISCUSSION: The C language switch statement is a useful construct in writing clean code. The
alternative is to use a less readable collection of if statements.

RESOLUTION: Switch will not be added for initial release. There is desire to manage floating point
ranges, which would take a long time to work out.

CLOSED on October 1, 2002.

73) What are the semantics of the keyword return in the main() function?

ADDED on September 19, 2002.

DISCUSSION: Currently the specification does not say what happens if the keyword return is
included in the main() function in any place other than the very end of the function.

RESOLUTION: return means exit main, just like getting to the end. It does not mean kill.

CLOSED on October 1, 2002.

74) How is data computed by the vertex or fragment shader communicated back to the application?

ADDED on September 24, 2002.

DISCUSSION: This issue is related to Issue (50) and Issue (54). If either the vertex processor or the
fragment processor are allowed to compute results that don’t continue down the processing pipeline
(e.g., histogram, min/max, or computing vertex array data from control points), how will those results
be communicated back to the application?

RESOLUTION: Postponed to a future version of the specification.

CLOSED: October 22, 2002.

75) Should uniforms and attributes which are initialized by the application allowed to be structs?

ADDED on September 25, 2002.

DISCUSSION: If we don’t allow this, the application has to pass all data via individual global
variables, and shader code must pack the data together in structs in order to use structs. This causes
ugly unnecessary shader code. On the other hand, initializing struct data should not involve a
complexification of the API.

Also, it seems broken to have structs in the language, but not have a way to initialize them from the
application. On the other hand, a complete solution for initializing structs seems beyond this release.
The OpenGL Shading Language 94

I S S U E S
It’s also been noted that attributes can be matrices, but there is no API for initializing them.

RESOLUTION:

* Add entry points to initialize an attribute matrix. At bind time, a 4x4 matrix takes 4 consecutive
locations, a 3x3 matrix takes 3 consecutive locations, and a 2x2 matrix takes 2 consecutive locations.
Details of layout are hidden. If an implementation only needs one slot for a 2x2, it only has to use
one slot, but the room is there for implementations that need two.

* Don't yet support arrays of attributes and structs of attributes.

* Allow uniform struct and array of struct.

* Support API initialization of struct members by specifying a string at GetUniformLocation time
that selects the member to be initialized. E.g. "struct.member", "struct[4].member",
"struct[2].member[2]" etc.

* Don't yet support struct-level initialization in the API, wait for future full solution that
understands strides, alignments, padding, etc.

CLOSED October 22, 2002.

76) Should vec2, vec3, vec4, mat2, mat3 and mat4 be defined as structures?

ADDED on September 26, 2002

DISCUSSION: Treating these types as structs is that the language would get much clearer and would
be easier to specifiy. This also will simplify compiler development.

Currently, these types are involved in special language features like"v.xyz" syntax and swizzling
operations like "v.yzx". However, such operations are not neccessary in a HLSL.For example,
swizzling operations are typical for assembly language tricks, for example to express a cross product
with two assembly commands. But such tricks are not necessary in a HLSL, you simply use build-in
functions, or define user-defined functions if really needed.Furthermore, in the rare cases where such
operations are really needed they can be easily expressed by standard language features like vec3(v.y,
v.z, v.x).

Furthermore, a syntax like v[i][] is planned to be added as special language feature.But situations
where you need dynamic indices for componentsare quite rare and can be easily expressed by buildin
access functions.

Another aspect is having different names for identical components,for example xyzw versus rgba.
Loosing this feature is probably this is the only real disadvantage of treating vec3 and vec4 as normal
struct.On the other hand, having unique names xyzw also may clarify shader programs.

On the other hand, the vector and matrix type are indeed special: (A) Most operators work on them.
Not so for struct. (B) Every element of a vector or matrix is the same type. Not so for struct. (C) A
matrix is conceptually two-dimensional, while structs are conceptually one-dimensional. The current
language isn't perfect at keeping a matrix 2D, given we have to sometimes know its column major
order, but it can be treated as 2D sometimes. (D) Hardware may have special hardware for vector and
matrix types that are more difficult to map to generic structs than to built-in types.

RESOLUTION: vectors and matrices are not structures, but some changes will be made. Summary:

* R-value swizzling becomes an operation on an expression. This is a change from the initial spec
saying it was a member selector on a vector variable.

* We remove the empty-brackets syntax.
95 TheOpenGLShadingLanguage

I S S U E S
* We keep the swizzling syntax we already have for vectors.

* We keep the array access syntax for vectors.

* We add, for matrix m, that m[i] is the ith column and is vector type. Both l-value and r-value.

* Because m[i] is a vector, and vectors have array syntax, then it just falls out that m[i][j] is the ith
column, jth row of m.

CLOSED on October 8, 2002.

77) Should the type of gl_FragStencil and gl_FBStencil be changed to int?

These are currently floats. The integer type has progressed in the language, so this should be
reconsidered.

RESOLUTION: Yes. However, stencil writing has been deferred to a future release, and frame buffer
reading has been removed.

CLOSED on December 10th, 2002.

78) Are stencils automatically clamped to the current min and max values that can be stored in the stencil
buffer?

RESOLUTION: Yes. However, stencil writing has been deferred to a future release.

CLOSED on December 10th, 2002.

79) Do we need to have near and far clipping planes available to the fragment shader.

DISCUSSION: ARB_fragment_program has these.

RESOLUTION: Yes.

CLOSED on December 10th, 2002.

80) Rectangular (non-power of 2) textures aren’t indexed by 0.0 to 1.0, but rather by their actual
dimensions. Is this a problem?

DISCUSSION: Yes this is a problem. Some hardware needs to know at compile time what kind of
texture is being accessed. We want to avoid having to recompile shaders due to state changes. More
texture built-in names could be used, so it is known at compile time what kind of texture is being
accessed. Something like textureRect3 to mean a rectangular texture returning 3 components. It is
also the case that rectangular textures are not a part of OpenGL 1.4, so these functions could be added
as an extension, and not be part of this release of the language specification.

RESOLUTION: Make room for adding more functions to support other texture types, but defer
doing this for rectagular textures until they have become part of core OpenGL.

CLOSED on December 17th, 2002.

81) Should we support a way of accessing fixed functionality fog from a shader, to take advantage of
possible fog that may exist in fixed functionality hardware?

DISCUSSION: This sounds similar to supporting a fixed functionality transform, which we do.
However, that was done out of need for invariance, which is not an issue with fog. It is also provided
in ARB_fragment_program, but the spirit of this spec is to replace fixed functionality and extra ways
of accessing it with programmability.

RESOLUTION: No special support of a fixed pipeline fog access will be provided.
The OpenGL Shading Language 96

I S S U E S
CLOSED on December 17th, 2002.

82) Is it really necessary to require writing of gl_Position, gl_FragColor or gl_FragDepth?

DISCUSSION: This can be difficult to handle error cases for when the writes are conditional. There
was also discussion that either kill should be called, or a gl_ output be written in a fragment shader.
However, that is irrelevant, as it’s okay to neither kill nor write any outputs in a fragment shader. For
the vertex shader, it still makes no sense to not write a position, so this should still be required.

RESOLUTION: For the fragment shader, there are no rules; either kill can be called or not, and if
not, nothing need be written to, existing values are picked up from the pipeline. For the vertex
shader, gl_Position should still be written, with the compiler giving a diagnostic when possible.

CLOSED on December 10th, 2002.

REOPENED on January 7, 2003, on concern of performance impact of writing default gl_FragColor
and gl_FragDepth when a compiler thinks they are conditionally written. For color, it should just be
undefined to not write gl_FragColor. For depth, it is more complex, as if depth is not written, then
the fixed functionality computed depth should be used. However, if depth is conditionally written,
the compiler will always have to initialize depth, which is a possible performance hit. Further
discussion of this generated alternatives of always having to write gl_FragColor from a shader, or
more complex things based on what the source code looks like.

RESOLUTION: Say that if a shader conditionally writes gl_FragDepth, then it must always write it.
See issue 95 for invariance concerns.

CLOSED January 17, 2003.

83) What should we do for modifying stencil? Does this effect push/pop state?

DISCUSSION: Writing a stencil value in a fragment shader introduces new functionality to
OpenGL. By itself, it is of questionable use. On the other hand, existing operations like increment
and decrement of stencil aren’t obviously expressible with the current specification. It may be that
stencils should only be updated when a fragment shaders writes no outputs and the API has been set
up for rendering to stencil. But, this has not been thoroughly investigated.

RESOLUTION: Stencil modifications are deferred to a future release.

CLOSED: December 17, 2002.

84) Should we add projective texture lookup? What about SHADOW textures?

DISCUSSION: Projective texture lookup could be postponed. Shadow textures are part of 1.4, so
should be added, using something like textureShadow*. However, if adding these, it’s trivial to also
add projective lookup at the same time. What if shadow modes are not enabled? Expectation is the
model looks like hardware just does whatever it’s set up to do by the application, and a shadow call
from a shader picks up what was thus specified. Separately named functions will be used, because
more data is input for the same target than for non-shadow lookups. Shadow could be called
“compare” instead of “shadow”, but renderman calls it “shadow”.

RESOLUTION: Add projective and shadow textures, with new names proj and shadow reflecting
this. Furthermore, projective textures will accept two sizes of input: all will take a vec4, plus a 2D
projective will take a vec3, etc. Also ensure spec says results are undefined if using a shadow built-in
on a texture not set up with a comparator, or using a non-shadow built-on on a texture set up with a
comparator.
97 TheOpenGLShadingLanguage

I S S U E S
CLOSED January 17th, 2003.

85) How does the compiler know if it’s a 1D, 2D, 3D or CUBE texture that’s being accessed? Basing this
on the number of components of an argument is error prone.

DISCUSSION: Which texture to use was based on the type of the lookup coordinate argument.
However, it’s conceivable to support having many textures bound to the same texture unit number,
and when the shader is written, the author should have in mind which one they are accessing, and
they shouldn’t get the wrong one due to getting a type wrong. Explicitly saying which textue could
be done with enums passed to the existing texture calls, or by adding new names with the texture type
in the name. The problem with using enums is that implies an argument a variable could be passed
into, while the requirement was to know at compile time. This argues for a name change.

RESOLUTION: Add more texture names so that it is explicit at compile time what kind of texture
lookup is being done. Something like texture1D3, texture2D3, texture3D3, and textureCube3,
where the last number is the number of components returned (could be 1, 2, 3, or 4).

CLOSED: December 17th, 2002.

86) There is little mention of color index in the spec. What support is provided for it?

DISCUSSION: Other extensions (ARB_vertex_program, ARB_fragment_program, texture
application) say operations are undefined if rendering in COLOR INDEX mode.

RESOLUTION: Remove references to this other than saying COLOR INDEX operations are
undefined.

CLOSED: December 10th, 2002.

87) Aux data buffers were part of the OGL2 white papers, but this specification needs to stand on the
current OGL core.

RESOLUTION: Remove aux data buffers from the specification. They can be added back if/when a
future extension provides other buffers in core GL to write to.

CLOSED: December 17th, 2002.

88) Variable array indexes of some arrays may be difficult to implement.

DISCUSSION: Arrays could be limited to just uniforms. However, this is restrictive, other graphics
languages had local variable arrays. It also lacks orthogonality with structs that contain arrays, but
may be used as a uniform or a local. It may help to limit the indexes of non-uniform arrays to be
uniform indexes. It seems unlikely that a shader would initialize a whole non-uniform array and then
index it with non-uniform indexes. (It seems much more likely that a non-uniform index would be
applied to a static array or texture.) On the other hand, since this is unlikely, the language spec. could
be left clean and full functionality, and for the next year or two it’s okay for compilers to complain
that something is too complex (given that it’s an unlikely need).

RESOLUTION: Full array support will be specified.

CLOSED: January 7, 2003.

89) Why aren’t the varyings gl_TexCoord0...gl_TexCoordn an array?

DISCUSSION: There may be some performance or compiler convenience to knowing these at
compile time or not allowing a variable index. This could interact with issue 88, where if indices to
varying arrays must be uniform then it’s easier to support these as arrays.
The OpenGL Shading Language 98

I S S U E S
RESOLUTION: These will be changed to arrays. Working on details for the 2 problems listed
above.

CLOSED: January 7, 2003.

REOPENED: Issue 88 was resolved with full array support. However, that leaves two possible
issues with texture coords. i) not being able to tell how many coords are actually active in a shader,
and ii) not being able to tell at compile time which coords are being accessed.

DISCUSSION: Alternatives:

1. Cg says something like this for constant loop-iteration:

"Can be determined at compile time" is defined as follows: The loop-iteration expressions can be
evaluated at compile time by use of intra-procedural constant propagation and folding, where the
variables through which constant values are propagated do not appear as lvalues within any kind of
control statement (if, for, or while) or ?: construct.

2. Be really restrictive: it must be a compile time constant or an induction variable with compile time
constant start/end/increment values.

3. Actually solve the fundamental resource size problem: make the shader writer re-declare the array
if they violate #2. That is, allow "varying gl_TexCoord[N]" to be declared by the shader, where N is
how many coordinates they want to use and require it if #2 isn't satisfied. Allow full variable access
in the language (with early hardware/compilers warning when it gets to tough.)

4. Do #3 with a #pragma instead.

5. Variation: Either all indices to gl_TexCoord[] in a shader must be constant expressions, or the
shader must declare gl_TexCoord[] with a size. The built-in should be declared as an empty array so
it’s consistent with C to declare it again with a size. Multiple modules can declare it with different
sizes, the maximum will be used at link time.

RESOLUTION: Use #5.

CLOSED: January 24, 2003.

90) The built-ins specify texture functions that return integers. However, such textures are not in core
OpenGL.

RESOLUTION: These built-in functions will be removed. They can be added back as part of a
future specification that adds integer textures to OpenGL.

CLOSED: December 17th, 2002.

91) There seems to be missing fog information in the fragment shader. gl_EyeZ is not enough. Should
there be some derived information?

RESOLUTION: Expand float gl_EyeZ to vec4 gl_FogFragCoord.

CLOSED: December 17th, 2002.

92) We need a way to get object code back, just like the model of C on host processors.

DISCUSSION: Lots in email. This is about lowest-level, machine specific code that may not even
be portable within a family of cards from the same vendor. One main goal is to save compilation
time. There seems to be general consensus that this has merit, but does not effect the language
definition.
99 TheOpenGLShadingLanguage

I S S U E S
RESOLUTION: This is an API issue, not a language issue.

CLOSED on December 19, 2002 as being an API issue.

93) In reality, the output varying interface from a vertex shader is different than the input varying
interface to a fragment shader, but this spec shares a single interface. This causes trouble with fog
and lacks compatibility with mix & match of fixed functionality and ARB_fragment_program

DISCUSSION: Splitting this interface in two makes sense. The fragment input should be
compatible with ARB_fragment_program and the vertex output should be compatible with
ARB_vertex_program. Fog can be dealt with this way, as reflected in the specification.

RESOLUTION: This should be done.

CLOSED January 17, 2003.

94) The way the language spec. is today, it is not possible to know at compile time which targets are used
on which units. If one believes hardware must be set up in advance with the right target on the right
unit, this is a big problem.

DISCUSSION: Possible solutions:

A. Use traditional OGL enables and binds and precedence to allow the app to communicate which
target is the one that needs to be active when the shader runs.

B. Change the language to require compile-time inspection to be sufficient to see which target is
being used on which unit.

C. Expect hardware to be able to dynamically access the requested target without having been set up
in advance by the driver to do so.

D. Add a new entry point to the API for setting an active texture: a) BindTextureGL2(GLenum
textureUnit, GLenum GLuint texture) (maybe without textureUnit parameter) But it seems that
nobody wants such a function because of incompatibility to the standard pipeline. b) Another option
may be a new utility function UseTexture(GLenum textureUnit, GLenum GLuint texture), which is
completely equivalent to i) binding the texture, ii) enabling the target of this texture and iii) disabling
all other targets. If texture is NULL, all targets are disabled. This solution would be 100% compatible
to the standard pipeline; the new function is only for convinience, providing no new functionality
(maybe as glu function).

E. Use ‘samplers’ the way Cg does.

RESOLUTION: Use samplers. Types sampler1D, sampler2D, sampler3D, and samplerCube will
be added. They will not be writable in a shader. They can only be global uniforms. They can be
arrays. They are opaque and cannot be operated on within a shader, only referenced. The first
parameter of texture calls will accept them. The API must somehow bind texture or texture/unit to
them. Enables, active-texture, etc. are superceded by these API bindings. At the language level, they
will provide the basis for possible future virtualization of textures.

Also see issue 97.

CLOSED January 17th, 2003.

95) Are there needs to solve invariance problems with gl_FragDepth or other aspects of the shading
language?

DISCUSSION: Some have raised concerns here, but it’s not clear what the problems/solutions are.
The OpenGL Shading Language 100

I S S U E S
RESOLUTION: For gl_FragDepth, say that there is no guarantee of invariance between a fixed
functionality depth and a shader computed depth. However, using the same shader depth
computation multiple times in the same or different shaders will be invariant.

Defer other variance issues to the next release.

CLOSED January 17th, 2003.

96) The lod built-in doesn’t make sense for anisotropic filtering.

DISCUSSION: Seems like we need lod1D, lod2D, lod3D, lodCube. But, the lod() built-in doesn't
seem useful, given that the texture built-ins currently take biases, not absolute lod's. And also given
that if anisotropic filtering were added, lod's specification would be troublesome.

RESOLUTION: Remove lod built-ins.

CLOSED January 17th, 2003.

97) Do we need a shadow sampler? E.g. a type sampler1DShadow, sampler2DShadow?

DISCUSSION: This gives even higher level of enforcement over hooking up the right texture state
with the right built-in lookup function. On the other hand, it sets a direction for adding lots of type
keywords.

RESOLUTION: Yes, add these types.

CLOSED January 24, 2003.

98) vec2, vec3, vec4 should be changed to float2, float3, float4 to be consistent with other languages. kill
should likewise be discard.

DISCUSSION: Should replace vec2, vec3, vec4 with float2, float3, float4 to match the established
conventions of the Stanford RSL, Cg, and HLSL.

Additionaly, these names allow better support for data types based on other scalars (int2, int3, int4,
half2, half3, double4, etc).

On the other hand, it seems consistent to have a scheme where a vector is made with a prefix type
abbreviation (default is float), followed by "vec", followed by number of components.

type vector of 4
---- -----------
float vec4
int ivec4
bool bvec4
half hvec4
double dvec4
float16 f16vec4
int32 i32vec4

Should we also change "kill" to "discard"? The rationale is that the OpenGL specification
consistently uses the term "discard" when a fragment is discarded and never uses kill. The KIL
instruction does appear in both the ARB_fragment_program & NV_fragment_program specifications
(probably because it makes a nice mnemonic for a three-letter instruction), but that's not consistent
really with a core OpenGL specification. Another reason is that Cg/HLSL has "discard" be a
keyword and there's no good reason to have redundant keywords for the same functionality.

RESOLUTION: Change kill to discard, leave vectors the way they are.
101 TheOpenGLShadingLanguage

I S S U E S
CLOSED January 24, 2003.

99) There is a mechanism lacking for dealing with a really large table in memory.

DISCUSSION: Want to be able to efficiently communicate a large array of information to a vertex
shader to support advanced animation techniques. This can be done today for arrays that fit into the
“uniform” space, but not for really large data structures. Need a way to declare these in the language,
and need API support to initialize them. It can be argued that this functionality is mostly present
through texture lookups. However, that doesn’t seem like the proper abstraction for a large array in
memory.

RESOLUTION: Defer this to a future release. Include a specification as part of this issue.

CLOSED January 24, 2003

100) We have a name conflict with texture built-ins if in the future lod-bias forms are added to the vertex
shader, or (more likely) absolute-lod forms are added to the fragment shader.

RESOLUTION: Call bias forms the names we have now. Call absolute-lod forms the names we
have now, suffixed with “Lod”.

CLOSED January 24, 2003.

101) Add initialization of uniforms. For example, uniform vec3 Color = vec3(1.0, 1.0, 0.0);

DISCUSSION: Has been requested by ISVs and NVIDIA. Doesn't seem necessary, but if majority
wants this we can add it. Also need to consider doing this for samplers (but not for arrays?). Note in
only makes sense for uniforms that are not changing during rendering, const globals are available,
and textures cannot be specified, so this may be of less utility than some think. Still it has value.

RESOLUTION: Do nothing. Save backward compatible enhancements for a future version of the
language.

CLOSED: December 2003.

102) Fix arrays (multi-dimensional arrays, static initialization of array members, variable sized arrays,
non-sized array parameters).

DISCUSSION: The function parameter declaration "vec4[]" does not say how big the array is,
somewhat implying pass by reference. The calling conventions are pass by value. This syntax
should be reserved for a possible future addition of passing an array by reference. To pass an array by
value, one should say the size "vec4[5]". Unfortunately, this would prevent calling the same function
with two differently sized arrays. But, then, perhaps, doing that should wait until there is a pass by
reference mechanism for arrays. Static initialization could be done by using the constructor name of
type followed by square brackets. E.g. "vec4[5] vArray = vec4[](v1, v2, v3, v4, v5);"

Once on this path, one could go further to making arrays first class objects. It could argue for
declarations like "float[7] fArray", and allowing copying and comparing of arrays. This also implies
eliminating auto-sizing of arrays, which is has other utility in making it easy to conserve interpolation
resources. Going even further, multidimensional arrays could be added, and we'd have to consider
arrays of arrays, typedefs, and true multidimensional arrays like "float[7,3] fMultiArray".

RESOLUTION: Be conservative with changes, but don't preclude backward compatibility of future
additions of all this functionality. The minimal changes that allow future backward compatibility are:
make function parameter declarations require the array size and make it a link error to have different
shaders with different sizes for the same global array. This allows us to keep the existing auto-sizing
The OpenGL Shading Language 102

I S S U E S
of gl_TexCoord. Array sizes have to match for a function call to be selected based on parameter
types, otherwise there would be a "no matching overloaded function" error. The rest is deferred to a
future release.

CLOSED: December 2003.

103) Clarify specification on vector matrix constructors initialized with fewer than needed elements. Do
you drop last row/column or initialize elements in order? Users would expect the former. Also, limit
constructors and make them operate in a more sensible manner.

DISCUSSION: The spec says enough components have to be provided. There are missing
interesting constructors for building matrices in other than column major order. There is also no
upper bound today on how many parameters may be passed to a constructor in a valid program. We
could also enumerate all the useful constructors, and say exactly what each one does. Also, there is
some blurring between the use of a constructor as a type converter versus a type builder. This would
be made more clear with a clean list of prototypes. The complete list was avoided earlier in favor of
a simpler specification.

RESOLUTION: Limit the number of arguments to a constructor. The last useful argument can have
more components than needed, and just be partially consumed, but arguments beyond that are
disallowed. Also, prevent other constructions that are today useless, but in the future could be
defined to be useful. These would be matrices constructed from other different sized matrices. E.g.
mat4(mat3) or mat2(mat4). Actual support of new kinds of constructors is deferred to a future
release.

CLOSED December 2003.

104) Should there be a fast atan() etc?

DISCUSSION: Two different directions to go. One is adding a performance vs. accuracy trade-off.
The other is to add domain limited functions. Both could be supported, with new sets of names. Eg.

atanDom() would be a domain limited arc tangent.

atanFast() would be a lower precision, higher performance arc tangent.

RESOLUTION: Do it as an extension first.

CLOSED December 2003.

105) Change spec so that code can be generated by concatenation of all shader strings across shader
objects.

DISCUSSION: There is some utility in just waiting to link time to do full compilation and link in
one step. One way to do this is to concatenate all the shaders together (within vertex or within
fragment, not across), and parse them. They still have to be parsed at compile time, to return errors,
etc., but would be parsed a second time at link time.

RESOLUTION: Not to do this. It is easy to make a specification error in making this change.

CLOSED December 2003.
103 TheOpenGLShadingLanguage

A C K N O W L E D G E M E N T S
11 ACKNOWLEDGEMENTS 10
If I have seen further it is by standing on ye shoulders of Giants — Isaac Newton

The vast majority of the ideas and elements in the proposed language can be found in the computer
science and computer graphics literature. Dave Baldwin of 3Dlabs wrote the white paper that formed the
basis for the OpenGL Shading Language. His original credits included the following:

• AT&T for the C language,
• Pixar for RenderMan,
• UNC for Pixel Flow language and their programmable OpenGL interface,
• Stanford for their shading language work,
• SGI for OpenGL (obviously) and their shading language research,
• Colleagues at 3Dlabs for the frequent active discussions that helped to clarify many points

Dave Baldwin has continued to be involved in the design of the shading language as it has developed.
Randi Rost and John Kessenich edited several public versions of the shading language white paper and
created the first version of this specification document. Antonio Tejada of 3Dlabs wrote the first parser for
the language to help resolve some of the fundamental language design issues.

Randi Rost, John Kessenich, Barthold Lichtenbelt, and Steve Koren of 3Dlabs formed the team that took
over the design and implementation of the OpenGL Shading Language once the initial direction had been
established. This group has been responsible for producing the publicly available specifications and
source code for the OpenGL Shading Language, for producing the initial implementation of the language
compiler and supporting OpenGL extensions, and for modifying the design of the language along the way.

Dave Baldwin, Dale Kirkland, Jeremy Morris, Phil Huxley, and Antonio Tejada of 3Dlabs have been
involved in many of the OpenGL Shading Language discussions and have provided a wealth of good
ideas and encouragement as we have moved forward. Other members of the 3Dlabs driver development
teams in Egham, U.K., Huntsville, AL, and Austin, TX have contributed as well. The 3Dlabs executive
staff should be commended for having the vision to move forward with the OpenGL Shading Language
proposal and the courage to allocate resources to its development. Thanks to Osman Kent, Neil Trevett,
Jerry Peterson, and John Schimpf in particular.

Numerous other people have been involved in the OpenGL Shading Language discussions. We would like
to thank our colleagues and fellow ARB representatives at ATI, SGI, NVIDIA, Intel, Microsoft, Evans &
Sutherland, IBM, Sun, Apple, Imagination Technologies, Dell, Compaq, and HP for contributing to
discussions and for helping to move the process along. In particular, Bill Licea-Kane and Evan Hart of
ATI Research have helped to improve the specification and the language itself through insightful review
and studious comments.
The OpenGL Shading Language 104

A C K N O W L E D G E M E N T S
A big thank you goes to the software developers who have taken the time to talk with us, send us email, or
answer survey questions on OpenGL.org. Our ultimate aim is to provide you with the best possible API
for doing graphics application development, and the time that you have spent telling us what you need has
been invaluable. A few ISVs lobbied long and hard for certain features, and they were able to convince us
to make some significant changes to the original OpenGL 2.0 proposal. Thanks, all you software
developers, and keep telling us what you need!

Others that have provided useful comments or review on the shading language include Christian Laforte
and Ian Ameline of Alias|Wavefront; Jonathan Putsman of Imagination Technologies; Darren Roberts
and Slawek Kilanowski of LightWork Design; John Carmack of ID software; Tim Sweeney and Daniel
Vogel of Epic Games; Bert Freudenberg of the University of Magdeburg; Folker Schamel of Spinor;
Karel Zuiderveld and Steve Demlow of Vital Images; Christoph Poliwoda, Christof Reinhart, and
Wolfgang Roemer of Volume Graphics; Christian Schormann of Pinnacle; Jake Kolb V of Whatif
Productions; Mik Wells of Softimage; Delwyn Holroyd and Gerk Huisma of 5D Solutions; Kurt Akeley,
Pat Hanrahan, and Bill Mark from Stanford University; and John Stauffer of Apple.

People that have helped shape the direction of shader objects and program objects include Christian
Laforte of Alias|Wavefront; Pierre Tremblay of Discreet; Bimal Poddar of Intel; Jon Paul Schelter of
Matrox; Jonathan Putsman of Imagination Technologies; Mik Wells of Softimage; Karel Zuiderveld and
Steve Demlow of Vital Images; and Tim Sweeney and Daniel Vogel of Epic Games.

This specification document was formally submitted to the OpenGL Architecture Review Board’s GL2
working group in June, 2002. That group was responsible for identifying issues, resolving issues, and
finalizing the specification for approval by the OpenGL Architecture Review Board. The following GL2
working group members contributed to the finalization of this specification:. Dave Baldwin, John
Kessenich, Steve Koren, Barthold Lichtenbelt, and Randi Rost from 3Dlabs, Inc.; Evan Hart, Bill Licea-
Kane (chairman of the ARB-GL2 working group), and Victor Vedovato from ATI Research, Inc.; Dave
Zenz of Dell; Brandon Fiflet and Kent Lin of Intel; Pat Brown, Matt Craighead, Cass Everett, Steve
Glanville, Jayant Kolhe, and Nick Triantos from NVIDIA; Jon Leech from SGI; Folker Schamel of
Spinor; Brian Paul from Tungsten Graphics; Eskil Steenburg from Quel solaar; Marc Olano from the
University of Maryland, Baltimore County; Michael McCool from the University of Waterloo; and Matt
Cruikshank, Steve Demlow, and Karel Zuiderveld from Vital Images.

Finally, a debt of gratitude is owed to the designers of the C programming language, the designers of
RenderMan, and the designers of OpenGL, the three standards that have provided the strongest influence
on our efforts. Hopefully, the OpenGL Shading Language will continue their traditions of success and
excellence.
105 TheOpenGLShadingLanguage

A C K N O W L E D G E M E N T S
The OpenGL Shading Language 106

	The OpenGL® Shading Language
	1 Introduction
	1.1 Changes since version 1.051
	1.2 Overview
	1.3 Motivation
	1.4 Design Considerations
	1.5 Error Handling
	1.6 Typographical Conventions

	2 Overview of OpenGL Shading
	2.1 Vertex Processor
	2.2 Fragment Processor

	3 Basics
	3.1 Character Set
	3.2 Source Strings
	3.3 Preprocessor
	3.4 Comments
	3.5 Tokens
	3.6 Keywords
	3.7 Identifiers

	4 Variables and Types
	4.1 Basic Types
	4.1.1 Void
	4.1.2 Booleans
	4.1.3 Integers
	4.1.4 Floats
	4.1.5 Vectors
	4.1.6 Matrices
	4.1.7 Samplers
	4.1.8 Structures
	4.1.9 Arrays

	4.2 Scoping
	4.3 Type Qualifiers
	4.3.1 Default Qualifiers
	4.3.2 Const
	4.3.3 Integral Constant Expressions
	4.3.4 Attribute
	4.3.5 Uniform
	4.3.6 Varying

	5 Operators and Expressions
	5.1 Operators
	5.2 Array Subscripting
	5.3 Function Calls
	5.4 Constructors
	5.4.1 Conversion and Scalar Constructors
	5.4.2 Vector and Matrix Constructors
	5.4.3 Structure Constructors

	5.5 Vector Components
	5.6 Matrix Components
	5.7 Structures and Fields
	5.8 Assignments
	5.9 Expressions
	5.10 Vector and Matrix Operations

	6 Statements and Structure
	6.1 Function Definitions
	6.1.1 Function Calling Conventions

	6.2 Selection
	6.3 Iteration
	6.4 Jumps

	7 Built-in Variables
	7.1 Vertex Shader Special Variables
	7.2 Fragment Shader Special Variables
	7.3 Vertex Shader Built-In Attributes
	7.4 Built-In Constants
	7.5 Built-In Uniform State
	7.6 Varying Variables

	8 Built-in Functions
	8.1 Angle and Trigonometry Functions
	8.2 Exponential Functions
	8.3 Common Functions
	8.4 Geometric Functions
	8.5 Matrix Functions
	8.6 Vector Relational Functions
	8.7 Texture Lookup Functions
	8.8 Fragment Processing Functions
	8.9 Noise Functions

	9 Shading Language Grammar
	10 Issues
	11 Acknowledgements

